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Abstract— Nonlinear dynamical systems are a promising
representation to learn complex robot movements. Besides their
undoubted modeling power, it is of major importance that
such systems work in a stable manner. We therefore present a
neural learning scheme that estimates stable dynamical systems
from demonstrations based on a two-stage process: first, a
data-driven Lyapunov function candidate is estimated. Second,
stability is incorporated by means of a novel method to respect
local constraints in the neural learning. We show in two
experiments that this method is capable of learning stable
dynamics while simultaneously sustaining the accuracy of the
estimate and robustly generates complex movements.

I. INTRODUCTION

Nonlinear dynamical systems appear to be one of the most
promising candidates as computational basis for exploitation
of flexible motor capabilities featured by modern humanoid
robots [1], [2], [3]. For instance, point-to-point movements
modeled by autonomous dynamical systems can provide a
library of basic building blocks called movement primitives
[4] which are very successfully applied to generate move-
ments in a variety of manipulation tasks [5], [6].

Recently, several studies emphasized that stability plays an
important role for such tasks besides the undoubted modeling
power of dynamical systems [7]. Reinhart et al. [8], e.g., used
a neural network approach to generate movements for the
humanoid robot iCub [9]. The performance and the stability
are addressed by two separately trained but superpositioned
networks. Another widely known approach is called dynamic
movement primitives (DMP) [10] which is a very successful
technique to generate motions with dynamical systems. It
provides a very accurate non-linear estimate of a given tra-
jectory robust to perturbations while ensuring global stability
at the target attractor. The stability is enforced through a
stable linear dynamical system which suppresses a nonlinear
perturbation at the end of the motion. The smooth switch
from non-linear to linear dynamics is controlled by a phase
variable. The phase variable can be seen as external stabilizer
which in return distorts the temporal pattern of the dynamics.
This leads to the inherent inability of DMP to generalize well
outside the demonstrated trajectory [11].

This directly motivates methods which are capable of
generalizing to unseen areas. Such methods are time-
independent and thus preserve the spatio-temporal pattern.
They became of special interest by focusing on the “what to
imitate” problem [12], [13].
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However, the incorporation of stability into non-linear
dynamical systems is inherently difficult due to their high
complexity, in particular, if systems are supposed to ap-
proximate given data sets. On the one hand an integration
through conservative stability constraints often leads to a
poor reproduction performance. On the other hand a too
strong focus on the accurate reproduction of the data lead
to a weak robustness to perturbations which might end in
divergence. The trade-off between stability and performance
is often resolved for the benefit of stability in return for losing
accuracy. This resolution is undesired if the complex parts of
underlying dynamics are of major interest. How to imprint
stability while simultaneously sustaining the complexity of
the dynamical system is thus a key question to tackle.

Several solutions to that question have been developed
in previous years. The common basis of these approaches
is Lyapunov’s theory which is a powerful tool to ana-
lyze the stability of such systems. One statement is that
asymptotic stability of a fixed-point is equivalent to the
existence of a Lyapunov function. However, most of the
approaches for estimation of dynamical systems only deal
with simple and data-independent Lyapunov functions which
makes the finding of a satisfactory solution to the trade-
off difficult. An appealing approach that aims at ensuring
robustness to temporal perturbations by learning vector fields
from demonstrations is the stable estimator of dynamical
systems (SEDS) [13]. It is based on a mixture of Gaussian
functions and respects correlation across several dimensions.
It is shown, that SEDS is globally asymptotically stable but
restricted to approximate contractive dynamics correspond-
ing to a quadratic Lyapunov function [13]. An extension
of SEDS called SEDS-II was very recently published in
[14] and implements less conservative stability conditions
as compared to SEDS. However, this extension relies on an
explicit stabilization approach called control Lyapunov func-
tion derived from Artstein and Sontag’s stability theory [15].
Such functions are used to stabilize nonlinear dynamical
systems through online corrections at runtime and interfere
with the dynamical system. They cannot directly guarantee
stability of the learned system and therefore are not directly
comparable to the other approaches which provide stable
estimates by construction. However, the learning of dynamics
that satisfy desired Lyapunov functions which guarantees
stability without interfering with the data is so far only solved
for special cases and remains difficult [14].

The application of standard candidates, i.e. quadratic Lya-
punov candidates as in Fig. 1 (left) or matrix parametrized
candidates visualized in Fig. 1 (center) is not satisfactory



when the tasks demands an appropriate complexity. In theory,
much more complex functions are possible and also desired,
see Fig. 1 (right), but there is no constructive or analytic way
to derive such a candidate function directly.

Fig. 1.
and L

Level sets of three different Lyapunov candidates L = x2, L=x"TPx,
=7, but which one to apply for learning?

We extend the ideas recently published in [16]. This learn-
ing approach is based on the idea to learn time-independent
vector fields while the learning is separated into two main
steps: i) predefine a proper Lyapunov candidate and ii)
use this function for sampling inequality constraints during
the learning process in order to obtain a stable dynamical
estimate. This separation has several advantages: it allows for
the application of arbitrary Lyapunov candidates and leads to
flexible and accurate solutions. Note, that the locality of this
approach prevents a direct stability guarantee, but the used
neural approach allows analytical differentiation and it can
be constructively and effectively proven ex-post if needed,
see [17]. Very similar to the already mentioned methods,
Lemme et al. [16] only proposes the implementation of
simple Lyapunov candidates, compare to Fig. 1 (left, center).
For this reason our contribution is to propose a method to
learn highly flexible Lyapunov candidates from data. We then
compare our method to the state of the art and show in a
detailed evaluation that its incorporation strongly reduces the
trade-off between stability and accuracy, which allows robust
and flexible movement generation for robotics.

II. NEURALLY-IMPRINTED STABLE VECTOR FIELDS

This section briefly introduces a technique to implement
asymptotic stability into neural networks via sampling based
on the recently published paper by Lemme et al. [16]. Stabil-
ity is implemented by sampling linear constraints obtained
from a Lyapunov candidate. The paper suggested to use
quadratic functions for stabilization which are in fact rel-
atively simple when considering complex robotic scenarios
and thus raises the question: what Lyapunov candidate to
apply instead?

A. Problem Statement
We consider trajectory data that are driven by time inde-
pendent vector fields:

x=v(x) ,xeQ , (1)

where a state variable x(¢) € Q C R? at time ¢ € R defines a
state trajectory. It is assumed that the vector field v: Q — Q is
nonlinear, continuous, and continuously differentiable with a

single asymptotically stable point attractor x* with v(x*) =0
in Q. The limit of each trajectory in Q thus satisfies:
tlim x(1)=x":¥x(0) € Q . (2)
N

The key question of this paper is how to learn v as a function
of x by using demonstrations for training and ensure its
asymptotic stability at target x* in Q. The estimate is denoted
by ¥ in the following.

B. Neural Network for Estimating v(x)

Consider the neural architecture depicted in Fig. 2 for
estimation of v. The fig-
ure shows a single hidden
layer feed-forward neu-
ral network called extreme
learning machine (ELM)
[18] comprising three lay-
ers of neurons: x € RY de-
notes the input, h e RR
the hidden, and ¥ € R? the
output neurons. The input
is connected to the hidden
layer through the input
matrix WinP ¢ R4 The
read-out matrix is given
by WUt ¢ R*R For input x the output of the ith neuron
is thus given by:

- 000

Fig. 2. Extreme learning machine
with three layer structure. Only the
read-out weights are trained super-
vised.
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where i=1,...,d, bj is the bias for neuron j, and f(x) =
T +e < denotes the Fermi activation function applied to each
neuron in the hidden layer. The components of the input
matrix and the biases are drawn from a random distribution
and remain fixed after initialization.

Let D= (x/(k),vi(k)) :i=1...Nyaj,k=1...N' be the data
set for training where Ny is the number of demonstrations.
Ngs denotes the overall number of samples in D. Supervised
learning is restricted to the read-out weights W°U and is done
by ridge regression in computationally cheap fashion. This
well known procedure defines the read-out weights as:

WO = argmin(||W - H(X) - V|* +&r[W[*) @)
w

where &g is the regularization parameter, H (X) is the matrix
collecting the hidden layer states obtained for inputs X, and
V is the matrix collecting the corresponding target velocities.
The evolution of motion can be computed by numerical
integration of X = ¥(x), where x(0) € R? denotes the starting
point.

C. Asymptotic Stability and Lyapunov’s Stability Theory

Dynamical systems implemented by neural networks have
been advocated as a powerful means to model robot motions
[8], [19], but “the complexity of training these networks to
obtain stable attractor landscapes, however, has prevented a
widespread application so far” [10]. Learning a vector field



from a few training trajectories gives only sparse information
on the shape of the entire vector field. There is thus a
desperate need for generalization to spatial regions where
no training data reside.
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Fig. 3. Unstable estimation of dynamical systems through demonstrations.
Data were taken from the LASA data set: A-shape (left) and sharp-C (right).

Fig. 3 illustrates two examples of unstable estimation of
a nonlinear dynamical system using an ELM. The networks
were each trained with three trajectories obtained from a hu-
man demonstrator. The left figure shows that the reproduced
trajectories converge to a spurious attractor in the immediate
vicinity of the target or diverge. The right figure demonstrates
that the motion either converges to other spurious attractors
far away from the target or completely diverge from it. This
illustration shows that learning this attractor landscape is
particularly hard without explicit consideration of stability.

In order to stabilize the dynamical systems estimate V,
we recall the conditions for asymptotic stability of arbitrary
dynamical systems found by Lyapunov: a dynamical system
is asymptotically stable at fixed-point x* € Q in the compact
and positive invariant region Q C R? if there exists a con-
tinuous and continuously differentiable function L: Q — R
which satisfies the following conditions:

(i) L(x") =0
(ifi) L(x*)=0

(ii) L(x) >0:Vx € Q,x #x"

(iv) L(x) <0:Vx € Q,x #x" . )

We assume that we have a function L that satisfies condition
(i)-(iii) and call it: Lyapunov candidate. Such a function can
be used to obtain a learning algorithm that also satisfies
condition (iv) w.r.t. the estimated dynamics v. We therefore
re-write condition (iv) by using the ELM learner defined in

Eq. 3):

L(x) = %L(x) = (ViL(x))T- %x = (VxL(x))T - ¥

d R d . (6)
= ZI(VXL(X))i- Y W (Y WiPxa+bj) <0

i= k=1 k=1

Note that L is linear in the output parameters W' irre-
spective of the form of the Lyapunov function L. Eq. (6)
defines a linear inequality constraint L(u) < 0 on the read-
out parameters W' for a given point u € Q which can
be implemented by quadratic programming [20], [21]. The
training of the read-out weights W given by Eq. (4) is
rephrased as a quadratic program subject to constraints given

by L:

WO = argmin(||W - H(X) — V> + &g |W||?)
W ‘ )
subject to: L(U) <0

where the matrix V' contains the corresponding target ve-
locities of the demonstrations and U = {u(1),...,u(N;)}
is the matrix collecting the discrete samples. Note that it
was already shown in [17] that a well-chosen sampling of
such points collected in the set U is sufficient to generalize
the incorporated discrete inequalities to continuous regions.
However, an ex-post process is needed to verify that the
constraint holds in the continuous region [17].

D. Quadratic Lyapunov Candidate

The most commonly used Lyapunov function is given by
L, = (x—x*)TI(x—x*), where I denotes the identity matrix.
This function is data independent, quadratic and fulfills
conditions (i)-(iii). This function is also a valid Lyapunov
function for estimates produced by SEDS [13].

In [16], Lyapunov candidates of the following form are
considered:

Lp(x):%(xfx*)T~P~(xfx*) . (3)

Note that (i)-(iii) are fulfilled if P is positive definite and
symmetric. It is defined as:

P =argminM(Lp) . )
Pey

We restrict the possible matrices to be an element of &2 :=
{PeR¥™ . pl =p A cla,l], A is EV of G}!, where
a =0.1 is a small and positive scalar. M is defined according
to the following sum over the training data:

Ntraj Ni
M(Lp) = i lkz O [(x'(k)"-P-V(k)] , (10)
S =1 k=1

where ® denotes the ramp function. The minimization op-
erator in Eq. (9) can be formulated as a nonlinear program.
We use successive quadratic programming based on quasi
Newton methods for optimization [22].

E. Sampling Constraints from the Lyapunov Candidate

We introduce the following sampling strategy in order to
minimize the number of samples needed for generalization
of the local constraints towards the continuous region.

The data set D for training and the region . where the
constraints are supposed to be implemented are assumed to
be given. As a first step (k = 0), the network is initialized
randomly and trained without any constraints (i.e. the sample
matrix U¥ = U° = 0 is empty). In this case learning can
be accomplished by ridge regression - the standard learning
scheme for ELMs, see Eq. (4). In the next step, Nc samples
U = {&',d?,...,6"c} are randomly drawn from a uniform
distribution in Q. Afterwards, the number of samples v ful-
filling (iv) of Lyapunov’s conditions of asymptotic stability

EV is used as abbreviation of eigenvalue.



is determined. The sampling algorithm stops if more then p
percent of this samples fulfill the constraint. Otherwise, the
most violating sample @ of condition (iv) is added to the
sample pool: U1 = U¥Ui. The obtained set of samples
is then used for training. A pseudo code of the learning
procedure is provided in Alg. 1.

Algorithm 1 Sampling Strategy

Require: data set D, region ., counter k = 0, sample pool
U* =0, and ELM ¥ trained with D
repeat
draw samples U = {&',a?,... 6"}
v = no. of samples in U fulfilling (iv)
UM = Uk Uargmax, p L(u)
train ELM with D and U**!
until p > %

III. WHAT IS A GOOD LYAPUNOV CANDIDATE FOR
LEARNING?
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Fig. 4. Stable estimation of A-shape (left) and sharp-C (right) by applying
L, as Lyapunov candidate. Compare with Fig. 3

Fig. 4 shows the same demonstrations as in Fig. 3 but with
additional consideration of stability by using L,. It is shown
that the form of the Lyapunov function candidate has a great
impact on the resulting shape of the estimated dynamics.
The data-independent candidate function L, is sufficient to
estimate the A-shape (Fig. 4, left) with good generalization.
It is less suited to approximate the sharp-C shape (Fig. 4,
right).

Note that it is impossible to find an estimate for the
sharp-C that approximates the data accurately while simul-
taneously fulfilling the quadratic constraint given by the
Lyapunov function candidate L. Part of the training samples
(x(k),v(k)) are violated by L,, where violation means that
the angle between the negative gradient of the Lyapunov
candidate at point x and the velocity of the data sample v is
bigger than 90°:

<(—VL(x(K)),v(k)) > 90° = (VL(x(k)))T -v(k) >0 (11)

Note that the derivation in Eq. (6) shows that this is in
contradiction to condition (iv) of Lyapunov’s theorem.

In order to prevent a violation of the training data D by
a given Lyapunov candidate L we generalize the measure M

in Eq. (10) to arbitrary Lyapunov candidates. The following
functional defines this measure of violation:

Ntraj Nt
ML) = - Y Y O[VLE®) V)] . (12
Nas (= i<

only those samples (x'(k),v!(k)) are counted in M where the
scalar product between VL(x/(k)) and v(k) is positive and
thus violating Lyapunov’s condition (iv).

A good Lyapunov candidate does not violate the training
data to a high degree (i.e. M is small). We cannot guarantee
this for data-independent functions in general. This raises the
question: which Lyapunov candidate function is suitable for
learning dynamical systems from complex data?

A. Neural Architecture for Learning Lyapunov Candidates

The Lyapunov candidate functions L, and Lp are only able
to capture a limited class of dynamics. We therefore suggest
a candidate which is more flexible but in turn still feasible
for implementation.

Consider an ELM architecture which defines a scalar
function Lgym : R? — R. Note, that this ELM also contains
a three-layered and random projection structure with only
one output neuron. The read-out matrix becomes WUt € RX,
The main goal is to minimize the violation of the training
data measured by Eq. (12) by making the negative gradient
of this function follow the training data closely. We again
define a quadratic program:

1 Niuaj N

v L 2 (= VEem(¥ () = V(0 |* +

ds i=1 k=1 (13)

. +8RRHWOUt||2) — min ,
Wwout

subject to the following equality and inequality constraints
corresponding to Lyapunov’s conditions (i)-(iv) such that
Lgrm becomes a valid Lyapunov function candidate:

(@) Lem(x")=0  (b) LeLm(x)>0:x#x"
(C) VLgim (X*) =0 (d) LELM (X) <0:x 75 X

where the time derivative in (d) is defined w.r.t the stable
system X = —X. The constraints (b) and (c¢) define inequality
constraints which are implemented by sampling these con-
straints. The gradient of the scalar function defined by the
ELM is linear in W°" and given by:

(14)

R d .
(Lem(x))i = Y WA (Y WiPxe+b)) (15
k=1

Jj=1

where f/ denotes the first derivative of the Fermi function.
We define a sampling strategy very similar to the one already
defined in Sect. II-E. This strategy is described in Alg. 2.

IV. BENCHMARKING ON THE LASA DATA SET

In the previous sections, three different Lyapunov can-
didates Ly, Lp, and Lgrv are suggested for learning. The
performance of these candidates in comparison to SEDS? are

2We used the SEDS software by Khansari-Zadeh et al. [23]



Algorithm 2 Lyapunov Function Learning

Require: data set D, region ., counter k = 0, sample pools
=0and Uf =0
Require: Lgpy: R — R trained with D w.r.t. (a) and (c)
repeat
draw samples U = {ii!, e}
Vi = no. of samples in U fulﬁlling 2)
V2 = no. of samples in U fulfilling (4)
if p > ﬁ then Uk+1 = Uf Uargmax,p LeLm (u)
if p > V2 then Uk+1 U¥ Uargmin,_p Lgpm(u)
train ELM with D, U™ and UF! wirt. (a) and (c)
until p > gL and p > 2

l'*2

evaluated on a library of 20 human handwriting motions from
the LASA data set [24]. The local accuracy of the estimate
is measured according to [13]:

AR VRN R) N
NZZ< (‘ MR E)]+e )
(v (k) — 9 ()T (k) —9(x (k)

V®IIV ] +e |

which quantifies the discrepancy between the direction and
magnitude of the estimated and velocity vectors for all
training data points®>. The accuracy of the reproductions is
measured according to

Eyelo =
(16)

+4q

1 Ntr\] Ni

= TN No. Z meH

i=1k

X0, an

where %/(-) is the equidistantly sampled reproduction of
the trajectory x/(-) and 7 denotes the mean length of the
demonstrations. We nevertheless believe that the trajectory
error is a more appropriate measure than the velocity error
to quantify the quality of the dynamical estimate.

The results for each shape are averaged over ten network
initializations. Each network used for estimation of the
dynamical system comprises R = 100 hidden layer neu-
rons, egr = 1078 as regularization parameter, and N¢ = 10°
samples for learning. The networks for Lyapunov candidate
learning also comprise R = 100 neurons in the hidden layer
and eggr = 1073 as regularization parameter. The SEDS
models where initialized with K =5 Gaussian functions in
the mse mode and trained for maximally 500 iterations.
Two movements from the data set are taken to analyze the
performance of the methods in detail: A-shape and J-2-shape.
This demonstrations are shown in Fig. 3 (left) and Fig. 5,
respectively. The experimental results are provided in Tab. L.
The table contains the time used for computation in seconds,
the measure of violation M, the velocity error according
to Eq. (16), and the trajectory error defined in Eq. (17).
All experiments have been accomplished on a x86_64 linux
machine with at least 4 GB of memory and a 2+ GHz intel

3Measure and values (r = 0.6, g = 0.4) taken from [13]. We set € = 107°.

TABLE I
RESULTS FOR A-SHAPE, J-2-SHAPE, AND THE ENTIRE DATA SET.

A-shape Time [s] M Eyelo Eiryj
SEDS 22.1+1.3 0.008 1134£.0029 | .0168 £.0004
L, 9.24+0.9 0.008 .106 £.0006 | .0081 =+.0003
Lp 7.8+0.8 0.000 .096 +.0015 | .0053 +.0002
Leim 50.5+4.6 0.000 .1034£.0023 | .0066 +.0004

J-2-shape Time [s] M Evelo By
SEDS 23.0+14 0.198 .1194.0008 | .03384.0001
L, 49.8+3.5 0.198 .093+.0015 | .0298 £.0032
Lp 36.44+2.7 0.147 .143+£.0011 | .0241+.0004
Leim 55.2+4.38 0.000 .069+.0013 | .0079 +.0004

LASA all Time [s] M Evelo Eryj
SEDS 22.6+1.3 | 0.0582 | .1094.0020 | .0169 4 .0003
L, 143+1.5 | 0.0582 | .114+.0003 | .0218+.0005
Lp 159+2.3 | 0.0180 | .1104+.0004 | .01774.0003
Lgim 52.4+4.0 | 0.0001 | .1034.0006 | .0145+.0004

processor in matlab R2010a*. The overall results for the
LASA data set are collected in Tab. I (last tabular). Fig. 5
visualizes the estimation of the J-2-shape and the respective
Lyapunov candidates.

The numerical results in Tab. I show that the function
used for implementation of asymptotic stability has a strong
impact on the approximation ability of the networks. The A-
shape (see first tabular) was accurately learned by all models.
The reason is that the demonstrations do not violate the
respective Lyapunov candidates to a high degree which is
indicated by small value of M. The J-2-shape (see second
tabular of Tab. I) is one of the most difficult shapes among
the shapes in the LASA data set. The experiments reveal that
the networks trained with Lgpp candidate stabilization have
the best velocity and trajectory error values. This is due the
high flexibility of the candidate function which eliminates
the violation of the training data. The third tabular in Tab. I
shows the results for the whole data set. It shows that the
differences in the velocity error are marginal in comparison
to the values for the trajectory error. The networks trained
with the quadratic Lyapunov candidate L, perform the worst
because the function cannot capture the structure in the data.
SEDS performs in the range of the quadratic functions due
the conservative stability constraints. The method using Ly m
has the lowest trajectory error values which is due to the high
flexibility of the candidate function. Methods which cannot
avoid the violation of the training data are, in principle,
not able to approximate a given data set accurately while
providing stable dynamics. The experiments thus reveal that
a flexible, data-dependent construction and application of
a Lyapunov function candidate is indispensable to resolve
the trade-off between stability and accuracy. However, it
is important to note that SEDS has the very appealing
feature that the stability is guaranteed by construction of
the model which is not possible with the proposed approach.
Nevertheless, as the neural network method allows analytical
differentiation, asymptotic stability can be constructively and
effectively proven ex-post if needed [17] but with the dis-
advantage of computational expensiveness. The consumption

4MATLAB. Natick, Massachusetts: The MathWorks Inc., 2010.
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Fig. 5.

Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization (first column), with L,

(second column), Lp (third column), Lgpm as Lyapunov candidate (fourth column). The SEDS estimate (fifth column, first row). The stability conditions
in SEDS are derived based on a quadratic energy function [14] (fifth column, second row).

of computational time is also given in Tab. 1.

In addition to the experiments, Fig. 5 shows the estima-
tions of the J-2-shape and their respective Lyapunov candi-
dates. The left column of the figure contains the estimation
result obtained for an ELM without regards to stability.
Obviously, even reproductions starting in the vicinity of the
demonstrations are prone to divergence. The second column
of Fig. 5 illustrates the results for networks trained with
respect to L,. It is shown that this Lyapunov candidate
introduces a very strict form of stability, irrespective of the
demonstrations. The reproductions are directly converging
towards the attractor. This is due to the high violation of the
demonstrations by L, close to the start of the demonstrations.
Column three of Fig. 5 shows the results for Lp. This
Lyapunov candidate is data-dependent but still too limited
to capture the full structure of the J-2 demonstrations. The
fourth column of the figure illustrates the performance of
the networks trained by Lgrym. The Lyapunov candidate is
strongly curved to follow the demonstrations closely (first
row, fourth column). The estimate leads to very accurate
reproductions with good generalization capability. The re-
sults for SEDS are shown in the fifth column of the figure.
As mentioned, SEDS is subject to constraints corresponding
to a quadratic Lyapunov function L,. The results are very
similar to the results for the networks applying L, or Lp as
Lyapunov candidate.

V. KINESTHETIC TEACHING OF ICUB

We apply the presented Lyapunov approach in a real world
scenario involving the humanoid robot iCub [9]. Such robots
are typically designed to solve service tasks in environments
where a high flexibility is required. Robust adaptability by
means of learning is thus a prerequisite for such systems. The
experimental setting is illustrated in Fig. 6. A human tutor

Fig. 6.

Kinesthetic teaching of iCub. The tutor moves iCub’s right arm
from the right to the left side of the small colored tower.

physically guides iCubs right arm in the sense of kinesthetic
teaching using a recently established force control on the
robot [25]. The tutor can thereby actively move all joints
of the arm to place the end-effector at the desired position.
Beginning on the right side of the workspace, the tutor first
moves the arm around the obstacle on the table, touches
its top, and then moves the arm towards the left side of
the obstacle were the movement stops. This procedure is
repeated three times.

The recorded demonstrations comprise between Ny,j =
542 and Ny, = 644 samples. The hidden layer of the net-
works estimating the dynamical system consists of R = 100
neurons and the regression parameter is &gr = 107> in the
experiment as well as for the network used for Lgpy. The
networks’ weights and biases are initialized randomly from
a uniform distribution in the interval [10,10] due to the
low ranges of the movement. The results of the experiment
are visualized in Fig. 7. The figure shows the impact of
the different Lyapunov candidates on the estimation of the
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Fig. 7. Results of the iCub teaching experiment. Reproduction of the
learned trajectories in meter according to the Lyapunov candidates L,, Lp,
and Lgpm (first). Reproductions according to Lgp v subject to random spatial
perturbations (second).

dynamics. The estimation of the networks trained by the
quadratic function L, is not able to capture the complex
shape of the dynamics. The networks trained with the Lp
function provides a better performance. The networks using
the Lgpm function yields a good estimate.

The second plot in Fig. 7 illustrates the robustness of the
learned dynamics against spatial perturbations. Therefore,
N =75 starting points are randomly drawn from a uniform
distribution in Q = [—0.05,0.1] x [—0.5,0.25] x [—0.05,0.2].
Even the trajectories which start far away from the demon-
strations converge to the target attractor and thus underline
the robustness of the proposed learning method.

VI. CONCLUSIONS

In this paper, we presented a learning approach which is
able to estimate vector fields used for movement generation.
The method is based on the idea of separating the learning
into two main steps: i) learning of a highly flexible Lyapunov
candidate from data and ii) implementation of asymptotic
stability by means of this function. We demonstrate that
this approach strongly reduces the trade-off between stability
and accuracy, which allows robust and complex movement
generation in robotics.
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