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Abstract

Accuracy and stability have in recent studies been emphasized as the two major ingredients to learn robot motions
from demonstrations with dynamical systems. Several approaches yield stable dynamical systems but are also limited
to specific dynamics that can potentially result in a poor reproduction performance. The current work addresses this
accuracy-stability dilemma through a new diffeomorphic transformation approach that serves as a framework generalizing
the class of demonstrations that are learnable by means of provably stable dynamical systems. We apply the proposed
framework to extend the application domain of the stable estimator of dynamical systems (SEDS) by generalizing the
class of learnable demonstrations by means of diffeomorphic transformations τ . The resulting approach is named τ -SEDS
and analyzed with rigorous theoretical investigations and robot experiments.
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1. Introduction

Nonlinear dynamical systems have been utilized recently
as flexible computational basis to model motor capabilities
featured by modern robots [1, 2, 3]. Point-to-point move-
ments are an important subclass that can be modeled by
autonomous dynamical systems. They are often used to
provide a library of basic components called movement
primitives (MP) [4, 5], which are applied very success-
fully to generate movements in a variety of manipulation
tasks [6]. The main advantage of the dynamical systems
approach over standard path planning algorithms is its
inherent robustness to perturbations that result from en-
coding the endpoint or goal as a stable attractor, whereas
the movement itself can be learned from demonstrations.
Naturally, the generalization and robustness then depends
on the stability properties of the underlying dynamical
systems, as has been emphasized in several recent stud-
ies [7, 8, 9, 10].

The most widely known approach is the dynamic move-
ment primitives (DMP) approach [7], which generates mo-
tions by means of a non-autonomous dynamical system.
Essentially, a DMP is a linear dynamical system with non-
linear perturbation, which can be learned from demonstra-
tion to model a desired movement behavior. The stability
is enforced by suppressing the nonlinear perturbation at
the end of the motion, where the smooth switch from non-
linear to stable linear dynamics is controlled by a phase
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variable. The phase variable can be seen as external stabi-
lizer which in return distorts the temporal pattern of the
dynamics. This leads to the inherent inability of DMP to
generalize well outside the demonstrated trajectory [11].

This shortcoming motivates methods which are capable
of generalizing to unseen areas in case of spatio-temporal
perturbations. Such methods are time-independent and
thus preserve the spatio-temporal pattern. They became
of special interest by focusing on the “what to imitate”
problem [12, 13].

An appealing approach that aims at ensuring robust-
ness to temporal perturbations by learning dynamical sys-
tems from demonstrations is the stable estimator of dy-
namical systems (SEDS) [13]. It is based on a mixture of
Gaussian functions and respects correlation across several
dimensions. In [13], it is rigorously shown that SEDS is
globally asymptotically stable in a fixed point attractor
which marks the end of the encoded point-to-point move-
ment. However, the proof also reveals that movements
learned by SEDS are restricted to contractive dynamics
corresponding to a quadratic Lyapunov function, i.e. that
the distance of the current state to the attractor will de-
crease in time when integrating the system’s dynamics.
This results in dynamical systems with globally asymptot-
ically stable fixpoint attractor but also potentially poor re-
production performance, if the demonstrated trajectories
are not contractive.

This stability vs. accuracy dilemma was acknowledged
by Khansari-Zadeh et al. in the original work on SEDS.
They remark that “the stability conditions at the basis
of SEDS are sufficient conditions to ensure global asymp-
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Figure 1: Learning of demonstrations with a dynamical system ad-
mitting a quadratic Lyapunov function. Contradicting quadratic
Lyapunov function and demonstrations (left). The resulting dynam-
ical system is inaccurately approximating the demonstrations when
using a learner which is bound to a quadratic Lyapunov function
(right).

totic stability of non-linear motions when modeled with
a mixture of Gaussian functions. Although our experi-
ments showed that a large library of robot motions can
be modeled while satisfying these conditions, these global
stability conditions might be too stringent to accurately
model some complex motions.” ([13], p. 956).

An example illustrating this trade-off in learning from
demonstrations while simultaneously satisfying a quadratic
Lyapunov function is shown in Fig. 1. The sharp-C-shaped
demonstrations are part of the LASA data set [14]. The
equipotential lines (colored) of the quadratic Lyapunov
function together with the demonstrations (black) are de-
picted in the left plot of the figure. The resulting flow
(blue arrows) of the dynamical system, the demonstra-
tions (black), and its reproductions (red) are depicted in
Fig. 1 (right). The reproductions by means of the dy-
namical system are obviously stable but also inaccurate in
approximating the demonstrations.

One way to overcome this problem is to separate con-
cerns, e.g. Reinhart et al. [10] used a neural network
approach to generate movements for the humanoid robot
iCub. Accuracy and stability are addressed in their ap-
proach by two separately trained but superpositioned net-
works, which is feasible but also very complex and yields
no stability guarantees.

Another approach that allows learning larger sets of
demonstrations accurately is the recently developed con-
trol Lyapunov function - dynamic movements (CLF-DM)
approach3 which was published in [15, 16]. CLF-DM is “in
spirit identical to the control Lyapunov function - based
control scheme in control engineering” ([15], p. 88) and im-
plements less conservative stability conditions compared to
SEDS but relies on an online correction signal which po-
tentially interferes with the dynamical system. We show
an example of such interference in Sec. 7.3. The construc-
tion of an appropriate control Lyapunov function (CLF)

3This approach was originally called SEDS-II [15].

is achieved by using an approach called weighted sum of
asymmetric quadratic function (WSAQF), which learns
from the set of demonstrations.

The technique of control Lyapunov functions was devel-
oped mainly by Artstein and Sontag [17, 18] who general-
ized Lyapunov’s theory of stability. Such control functions
are used to stabilize non-linear dynamical systems (that
are typically known beforehand and not learned) through
corrections at runtime and interfere with the dynamical
system whenever unstable behavior is detected. The detec-
tion and elimination of unstable tendencies of the dynam-
ical system without distorting the dynamics too strongly
remains difficult nevertheless.

A further approach to accurately learn a larger class
of dynamics than SEDS was developed by Lemme et al.
and called neurally imprinted stable vector fields (NIVF)
[8]. It is based on neural networks and stability is ad-
dressed through a Lyapunov candidate that shapes the
dynamical system during learning by means of quadratic
programming. Lyapunov candidates are constructed by
the neurally imprinted Lyapunov candidate (NILC) ap-
proach introduced recently in [19]. While this approach
leads to accurate results, stability is restricted to finite re-
gions in the workspace. Also the mathematical guarantees
are obtained by an ex-post verification process which is
computationally costly.

The current work therefore addresses the accuracy-
stability dilemma through a new framework that general-
izes the class of learnable demonstrations, provides prov-
ably stable dynamical systems and integrates the Lya-
punov candidate into the learning process.

Assume that a data set (x(k),v(k)) encoding demon-
strations is given, where x(k) refers to the position and
v(k) to the velocity of a robot end-effector. As a first
step, a so-called Lyapunov candidate L ∈ L with L :
Ω → R that is consistent with the demonstrations (i.e.
∇L(x(k))·v(k) < 0 : ∀k) is learned. Second, diffeomorphic
transformations τ : L×Ω→ Ω̃ are defined that transform
those candidates from the original space to a new space in
which they appear as a fixed and simple function.

These transformations (parameterized with the learned
Lyapunov candidate L) are then used to map the demon-
strations from Ω to Ω̃ where they are consistent with the
underlying fixed Lyapunov function of the learner - in the
special case of SEDS, a quadratic function. That is, in
the new space a provably globally stable dynamical sys-
tem (i.e. Ω = Ω̃ = Rd) can be learned with respect to
the transformed data, which is then back-transformed into
the original space with the inverse mapping τ−1

L : Ω̃ → Ω
which exists because of the diffeomorphic properties of τL.
It is then shown that in the original space, the Lyapunov
candidate indeed can be used to prove stability of the
transformed dynamical system, which accurately models
the demonstrations and resolves the dilemma.

We evaluate the new approach - named τ -SEDS - in
detail, provide rigorous theoretical investigations, and ex-
periments that substantiate the effectiveness and applica-
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bility of the proposed theoretical framework to enhance
the class of learnable stable dynamical systems to gener-
ate robot motions.

2. Programming Autonomous Dynamical Systems
by Demonstration

Assume that a data set D = (xi(k),vi(k)) with the indices
i = 1 . . . Ntraj and k = 1 . . . N i consisting of Ntraj demon-
strations is given. N =

∑
iN

i denotes the number of sam-
ples in the data set. The demonstrations considered in this
paper encode point-to-point motions that share the same
end point, i.e. xi(N i) = xj(N j) = x∗ : ∀i, j = 1 . . . Ntraj

and vi(N i) = 0 : ∀i = 1 . . . Ntraj. These demonstration
could be a sequence of the robot’s joint angles or the posi-
tion of the arm’s end-effector possibly obtained by kines-
thetic teaching.

We assume that such demonstrations can be modeled
by autonomous dynamical systems which can be learned
by using a set of parameters that are optimized by means
of the set of demonstrations.

ẋ(t) = y(x(t)) : x ∈ Ω , (1)

where Ω ⊆ Rd might be the joint or workspace of the robot.
It is of particular interest that y(x) : Ω → Ω has a single
asymptotically stable point attractor x∗ = v(x∗) = 0 in Ω,
besides that y is nonlinear, continuous, and continuously
differentiable. The limit of each trajectory has to satisfy:

lim
t→∞

x(t) = x∗ : ∀x ∈ Ω . (2)

New trajectories can be obtained by numerical integration
of Eq. (1) when starting from a given initial point in Ω.
They are called reproductions and denoted by x̂i(·) if they
start from the demonstrations’ initial points xi(0).

In order to analyze the stability of a dynamical system,
we recall the conditions of asymptotic stability found by
Lyapunov:

Theorem 1. A dynamical system is locally asymptoti-
cally stable at fixed-point x∗ ∈ Ω in the positive invari-
ant neighborhood Ω ⊂ Rd of x∗, if and only if there ex-
ists a continuous and continuously differentiable function
L : Ω→ R which satisfies the following conditions:

(i) L(x∗) = 0 (ii) L(x) > 0 : ∀x ∈ Ω\x∗

(iii) L̇(x∗) = 0 (iv) L̇(x) < 0 : ∀x ∈ Ω\x∗ .
(3)

The dynamical system is globally asymptotically stable
at fixed-point x∗ if Ω = Rd and L is radially unbounded,
i.e. ‖x‖ → ∞ ⇒ L(x) → ∞. The function L : Ω → R is
called Lyapunov function.

It is usually easier to search for the existence of a Lyapunov
function than to proof asymptotic stability of a dynamical
system directly. Typically, previously defined Lyapunov
candidates are used as a starting point for stability ver-
ification and conditions (i)-(iv) of theorem 1 are verified

in a stepwise fashion to promote the candidate to become
an actual Lyapunov function. We thus first define what
kind of Lyapunov candidates are in principle applicable
for investigation.

Definition 1. A Lyapunov candidate is a continuous
and continuously differentiable function L : Ω → R that
satisfies the following conditions

(i) L(x∗) = 0 ( ii) L(x) > 0 : ∀x ∈ Ω\x∗

(iii) ∇L(x∗) = 0 (iv) ∇L(x) 6= 0 : ∀x ∈ Ω\x∗ ,
(4)

where x∗ ∈ Ω is the asymptotically stable fixed-point at-
tractor and Ω is a positive invariant neighborhood of x∗.
L is a globally defined Lyapunov candidate if Ω = Rd and
L is radially unbounded in addition to the previous condi-
tions, i.e. ‖x‖ → ∞⇒ L(x)→∞.

We use the term Lyapunov candidate whenever the func-
tion is used to enforce asymptotic stability of a dynamical
system during learning and control Lyapunov function if
the dynamical system is stabilized during runtime. In the
following, we will learn such candidate functions and eval-
uate their quality. To this aim we define what it means
that a Lyapunov candidate contradicts a given demonstra-
tion or reference trajectory.

Definition 2. A Lyapunov candidate L : Ω → R vio-
lates/contradicts a dynamical system v : Ω → Ω or a
demonstration (xi(k),vi(k)) : k = 1 . . . N i, if and only if

∃x ∈ Ω : ∇TL(x) · v(x) > 0 or

∃k : 1 ≤ k ≤ N i : ∇TL(xi(k)) · vi(k) > 0 .
(5)

The dynamical system or the given demonstration is said
to be consistent with or satisfying/fulfilling the Lya-
punov candidate if and only if there is no violation.

3. Related Work

Several different approaches for movement generation and
learning of autonomous dynamical systems have been in-
troduced so far. This section introduces the most impor-
tant developments among those methods as related work
and embeds them in the previously defined formalism nec-
essary to achieve stable movement generation.

3.1. Stable Estimator of Dynamical Systems (SEDS)

The stable estimator of dynamical systems (SEDS) [13]
is a advanced version of the binary merging algorithm [9]
and learns a dynamical system by means of a Gaussian
mixture model

ẋ =

K∑
k=1

P(k)P(x|k)∑
i P(k)P(x|i)

(
µkẋ + Σkẋx(Σkx)−1

(
x− µkx

))
(6)

where P(k), µk, and Σk yield the prior probability, the
mean, and the covariance matrix of the K Gaussian func-
tions, respectively. Note that this model can be expressed
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as a space varying sum of linear dynamical systems accord-
ing to the definition of the matrix Ak = Σkẋx(Σkx)−1, the
bias bk = µkẋ − Akµkx, and the nonlinear weighting terms

h(k) = P(k)P(x|k)∑
i P(k)P(x|i) . The reformulation according to this

definition leads to

ẋ(t) = y(x(t)) =

K∑
k=1

hk(x(t))
(
Akx(t) + bk

)
. (7)

Learning can be done by minimization of different objec-
tive functions by a non-linear program subject to a set of
non-linear constraints. A possible objective function can
be the mean square error functional

min

N∑
ik

‖vi(k)− y(xi(k))‖2 , (8)

which is minimized in the parameters of the Gaussian mix-
ture model and at the same time subject to the following
non-linear constraints [13]

(i) bk = −Akx∗

(ii) Ak +Ak
T ≺ 0 : ∀k = 1, . . .K ,

(9)

where ≺ 0 denotes the negative definiteness of a matrix.
Note, that it is also necessary to add the constraints for
the requirements on the covariance matrices Σk and priors
P to the non-linear program4. It is shown that these con-
straints are sufficient conditions for the learned dynamical
system to be globally asymptotically stable.

The stability analysis in the original contribution con-
siders a quadratic Lyapunov candidate

L(x) =
1

2
(x− x∗)T (x− x∗) : ∀x ∈ Rd , (10)

which is used for stability analysis. In detail, the theo-
rem states that this scalar function is indeed a Lyapunov
function of the autonomous dynamical system defined by
SEDS

L̇(x) =
d

dt
L(x(t))

= ∇L(x(t)) · d
dt

x(t) = ∇L(x(t)) · ẋ(t)

=

K∑
k=1

hk(x)︸ ︷︷ ︸
>0

(x− x∗)Ak(x− x∗)︸ ︷︷ ︸
<0

< 0 : ∀x ∈ Rd\x∗ .

(11)

This directly suggests that the dynamical system learned
by SEDS are restricted to contractive behavior irrespec-
tive of the used demonstrations, i.e. that the distance
‖x̂(t) − x∗‖ of the dynamic state x̂(t) to the attractor x∗

decreases in time when integrating ˙̂x(t) = y(x̂(t)). This

4See the paper by Khansari-Zadeh et al. [13] for further details.

means that if the Lyapunov function is in contradiction
to the demonstrations, learning the data by means of this
method will result in a dynamical system with asymptot-
ically stable fixpoint attractor but also a potentially poor
reproduction performance.

3.2. Control Lyapunov Function-Based
Dynamics Movements (CLF-DM)

In order to overcome the limitations of SEDS, a different
approach called control Lyapunov function-based dynam-
ics movements (CLF-DM) that is based on control Lya-
punov functions is proposed in [16]. This approach is sepa-
rated into three steps in order to obtain a stable dynamical
system. The first step is to learn an appropriate Lyapunov
candidate that is suited towards the data. The second step
is to learn the demonstrations with a regression method.
Typically, Gaussian process regression, Gaussian mixture
regression, locally weighted projection regression, or sup-
port vector regression techniques are used. However, this
dynamical system is very likely unstable and will be stabi-
lized in the third step. The idea is to stabilize the trajec-
tory by means of online corrections during runtime that
are performed whenever the Lyapunov candidate is vio-
lated by the motion. The resulting dynamics are given
by

ẋ(t) = y(x(t)) = ŷ(x(t)) + u(x(t)) , (12)

where ŷ is the unstable system obtained by the regression
method and u is the correction signal applied during run-
time. This correction signal u needs an appropriate con-
trol Lyapunov function that is consistent with the data in
order to control the signal accurately. The signal itself is
obtained by solving a constrained optimization program
analytically and strongly related to Sontag’s universal for-
mula [18]

u(x) =


−ŷ(x∗) : x = x∗

0 : ∇L(x)T ŷ(x) ≤ −ρ(x)

−∇L(x)T ŷ(x)+ρ(x)
∇L(x)T∇L(x)

: otherwise

. (13)

The parameterized function ρ(x) = ρ0

(
1− e−κ0‖x‖

)
de-

fines the threshold for activation of the online corrections
while the scalar function L defines the actual control Lya-
punov function. One method to obtain a suitable CLF
from demonstrations is the so-called weighted sum of asym-
metric quadratic functions (WSAQF) [16] which was specif-
ically developed for the CLF-DM approach and serves as a
potential control Lyapunov function. A detailed descrip-
tion of the approach is given in Sec. 5.1.

The CLF-DM approach allows learning a larger set of
robot motions compared to the SEDS approach. How-
ever, the learning of the Lyapunov candidate function and
the dynamical system are two separate processes, which is
different from the unified learning of the SEDS approach.
The online corrections can thus lead to a performance that
can be outperformed by SEDS in specific cases.
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3.3. Neurally Imprinted Stable Vector Fields (NIVF)

Another successful approach to represent robotic move-
ments by means of autonomous dynamical systems is based
on neural networks and called the neurally imprinted vec-
tor fields approach [8]. It features efficient supervised
learning and incorporates stability constraints via quadratic
programming (QP). The constraints are derived from a pa-
rameterized or learned Lyapunov function which enforces
local stability.

The approach considers feed-forward neural networks
that comprise three different layers of neurons: x ∈ RI
denotes the input, h ∈ RR the hidden, and y ∈ RI the
output neurons. These neurons are connected via input
matrix W inp ∈ RR×I , which remains fixed after random
initialization and are not subject to supervised learning.
The read-out matrix given by W out ∈ RI×R which is sub-
ject to supervised learning. For input x the output of the
ith read-out neuron is thus given by

yi(x) =

R∑
j=1

W out
ij f(

I∑
n=1

W inp
jn xn + bj) , (14)

where the biases bj parameterize the component-wise Fermi
function f(x) = 1

1+e−x of the jth neuron in the hidden
layer.

It is assumed that a Lyapunov candidate L is given.
In order to obtain a learning algorithm for W out that also
respects condition (iv) of Lyapunov’s theorem, this condi-
tion is analyzed by taking the time derivative of L:

L̇(x) = (∇xL(x))T · d

dt
x = (∇xL(x))T · v̂

=

I∑
i=1

(∇xL(x))i

R∑
k=1

W out
ij fj(W

inpx+ b) < 0 .
(15)

Interestingly, L̇ is linear in the output parameters W out

and irrespective of the form of the Lyapunov function L.
For a given point u ∈ Ω, Eq. (15) defines a linear constraint
on the read-out parameters W out, which is implemented
by solving the quadratic program with weight regulariza-
tion [20]:

W out = arg min
W

(‖W ·H(X)− V ‖2 + ε‖W‖2)

subject to: L̇(U) < 0 ,
(16)

where the matrix H(X) = (h(x(1)), . . . ,h(x(Ntr))) col-
lects the hidden layer states obtained from a given data set
D = (X,V ) = (xi(k),vi(k)) for inputs X and the corre-
sponding output vectors V and where ε is a regularization
parameter. It is shown in [20] that a well-chosen sampling
of points U is sufficient to generalize the incorporated dis-
crete constraints to continuous regions in a reliable way.
The independence of Eq. (15) from the specific form of
L motivates the use of methods to learn highly flexible
Lyapunov candidates from data. The neurally imprinted
Lyapunov candidate (NILC) [19] is such a method that

enables the NIVF approach to generate robust and flexi-
ble movements for robotics. Details of the approach are
stated in Sec. 5.2.

4. Learning Stable Dynamics under
Diffeomorphic Transformations

This section describes how to link a Lyapunov candidate
with respect to given demonstrations in one space Ω and
the learning of a stable dynamical system with quadratic
Lyapunov function with respect to transformed data in a
second space Ω̃ by means of a diffeomorphism τ . The latter
is described on an abstract level and by an illustrative
example. Also the main algorithmic steps are introduced.
The procedure undergoes a rigorous stability analysis that
substantiates the underlying principles.

4.1. Overview

Assume that a Lyapunov candidate L : Ω→ R with L ∈ L,
which is consistent with the demonstrations in D, is given
or can be constructed automatically. The main goal is
to find a mapping τ : L × Ω → Ω̃ that transforms the
Lyapunov function candidate L into a fixed and simple
function L̃ : Ω̃ → R in the new space Ω̃ such that the
parameterized mapping τL : Ω → Ω̃ is a diffeomorphism.
The transformation is defined according to the following

Definition 3. A diffeomorphic candidate transfor-
mation τ : L × Ω → Ω̃ with (L,x) 7→ x̃ transforms all
Lyapunov candidates L : Ω → R with L ∈ L to a fixed
function L̃ : Ω̃ → R such that the parameterized map-
ping τL : Ω → Ω̃ is a diffeomorphism, i.e. τL : Ω → Ω̃ is
bijective, continuous, continuously differentiable, and the
inverse mapping τ−1

L : Ω̃ → Ω is also continuous and con-
tinuously differentiable. We say τ corresponds to L.

The main example and standard case used in this work
is to target a quadratic function L̃(x̃) = L(τ−1

L (x̃)) = x̃2

after transformation.
The idea is then to use τL in order to transform the

data set D into the new space. The obtained data set

D̃ = (x̃i(k), ṽi(k)) = (τL(xi(k)), JTτ (xi(k)) · vi(k)) (17)

is consistent with this Lyapunov candidate L̃ if the initial
data D is consistent with the Lyapunov function candidate
L. The term (Jτ (xi(k)))mn = ∂

∂xm
τn(xi(k)) denotes the

Jacobian matrix for τL at point xi(k).
Also assume that a learner is given which is able to

guarantee asymptotic stability by means of a quadratic
Lyapunov function L̃(x̃) = x̃2 (e.g. the SEDS approach).
The dynamical system ỹ : Ω̃→ Ω̃ trained with the data D̃
in Ω̃ is then expected to be accurate. The inverse of the
diffeomorphism τ−1

L : Ω̃→ Ω is used to map the dynamical
system back to the original space. The back transforma-
tion y : Ω→ Ω of ỹ is formally given by

y(x) := J−Tτ (τL(x)) · ỹ(τL(x)) , (18)
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Algorithm 1 Diffeomorphic Transformation Approach

Require: Data set D = (xi(k),vi(k)) : i = 1 . . . Ntraj, k = 1 . . . N i is given
1) Construct Lyapunov candidate L : Ω→ R that is consistent with data D
2) Define a diffeomorphism τ : L × Ω→ Ω̃ where L̃ takes a quadratic form
3) Transform D to D̃ = (x̃i(k), ṽi(k)) = (τL(xi(k)), JTτ (xi(k)) · vi(k))
4) Learn a dynamical system ỹ : Ω̃→ Ω̃ of data D̃ in Ω̃ with stability according to L̃
5) Apply the back transformation y(x) := J−Tτ (τL(x)) · ỹ(τL(x)) in Ω to obtain a stable dynamical system

τ L :Ω→Ω̃

τ L
−1:Ω̃→Ω

L :Ω→ℝ L̃ :Ω̃→ℝ , x̃→ x̃2

ỹ ( x̃) :Ω̃→Ω̃y ( x)= J τ
−T ỹ

D D̃

Figure 2: Schematic illustration of the proposed transformation ap-
proach. The left part of the figure shows the original space Ω,
the demonstrations D, and the complex Lyapunov candidate L.
The right side visualizes the transformed space Ω̃ equipped with a
quadratic Lyapunov function L̃ and the corresponding data D̃. The
transformation τ between those space is visualized by the arrows in
the center part of the plot.

where (J−Tτ (τ(x)))ij = ∂
∂x̃i

τL
−T
j (x̃) denotes the transpose

of the inverse Jacobian matrix for τL at point x. This
transformation behavior is rigorously investigated in the
following sections regarding the stability analysis of the
underlying dynamical systems. This procedure is summa-
rized in Alg. 1 and schematically illustrated in Fig. 2.

4.2. The Diffeomorphic Transformation Approach:
A Simple Illustrative Example

Fig. 3 illustrates the intermediate steps of the diffeomor-
phic candidate transformation and learning of the SEDS
approach shown in Alg.1. The movement obviously vio-
lates a quadratic Lyapunov candidate (as shown in Fig. 1)
and is thus well suited for the transformation approach.

First, we manually construct an elliptic Lyapunov can-
didate that is more or less consistent with the training data
D (step 1). It is directly clear that an elliptic Lyapunov
candidate is too restricted for learning complex motions,
but it is good enough to serve as an example. We define
the Lyapunov candidate as

L(x) = xTPx , (19)

with the diagonal matrix P = diag(1,5). The set of possi-
ble candidates L is given by

L =
{
xTPx : P diag. matrix and pos. def.

}
, (20)

The visualization of this scalar function that serves as Lya-
punov candidate is shown in Fig. 3 (second). Note, that
this function still violates the training data but relaxes the

violation to a satisfactory degree. A diffeomorphic candi-
date transformation τ that corresponds to L is given (step
2) by the following mapping

τL(x) =
√
P , (21)

which is the component-wise square root of the matrix
P and particularly constructed for the elliptic candidate
functions defined by different diagonal matrices P . It is
important to understand that this function τ maps any
elliptic Lyapunov candidate in L onto a quadratic function.

L̃(x̃) = L(τ−1(x̃)) = L(
√
P
−1

x̃)

= (
√
P
−1

x̃)TP
√
P
−1

x̃

= x̃T
√
P
−T
P
√
P
−1

x̃

= x̃T
√
P
−1
P
√
P
−1

x̃

= x̃T x̃ = ‖x̃‖2 .

(22)

The respective Jacobian matrix is analytically given and
calculated as

Jτ (x) =
√
P , (23)

where we used the symmetric definition of the P matrix:√
P
T

=
√
P .

The training data set D is then prepared for learn-
ing by transforming the data set into D̃ that is defined
in the transformed space (step 3) which is consistent with
a quadratic Lyapunov candidate L̃(x̃). The result of the
data transformation and the Lyapunov candidate is illus-
trated in Fig. 3 (second). We then apply a learning ap-
proach (here: SEDS) to obtain ỹ (step 4) which is stable
according to a quadratic Lyapunov function L̃ in Ω̃ after
learning the data D̃. The result of the learning is de-
picted by the dynamic flow after learning the transformed
demonstrations D̃ in Fig. 3 (third).

Finally, the inverse transformation τ−1
L =

√
P
−1

is
used to obtain the dynamics y for the original data D in
the original space Ω (step 5). Eq. (18) was used for back
transformation. It is illustrated that the transformed data
set is still violating the quadratic function, however, less
strongly such that more accurate modeling of the original
demonstrations is enabled, see Fig. 3 (fourth). Note that
the resulting dynamical systems and their generalization
can potentially differ in many aspects. It is important to
understand that the origin of such effects are caused by
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Figure 3: Demonstrations D and the respective Lyapunov candidate L in Ω (first). Transformed Lyapunov function L̃ and transformed
demonstrations D̃ in Ω̃ (second). The dynamical system ỹ learned by SEDS using the data set D̃ which fulfills a quadratic Lyapunov function
in the transformed space Ω̃ (third). The result y in Ω after applying the inverse transformation τ−1

L of ỹ (fourth).

many different features of the algorithm, e.g. the selection
of the Lyapunov candidate or the randomness of the SEDS
algorithm. The exact definition of the term “generalization
capability” of the dynamical system and its measurement
remains difficult. Systematic approaches to answer this
question were rigorously discussed in [21].

4.3. General Stability Analysis

The main question raised is regarding the stability of the
transformed system y in the original space Ω. It is also of
fundamental interest how the generalization capability of
the learner in Ω̃ transfers into the original space Ω.

The following proposition indicates the necessary con-
ditions for implementation.

Proposition 1. Let D = (xi(k),vi(k)) be a data set with
i = 1 . . . Ntraj and k = 1 . . . N i consisting of Ntraj demon-
strations and L : Ω → R be a Lyapunov candidate from
the set L. Let τ : L×Ω→ Ω̃ be a diffeomorphic candidate
transformation that corresponds to L.

Then, it holds for all L ∈ L that the dynamical system
y : Ω → Ω with y(x) := J−Tτ (τL(x)) · ỹ(τL(x)) is asymp-
totically stable at target x∗ with Lyapunov function L if
and only if the dynamical system ỹ : Ω̃→ Ω̃ is asymptot-
ically stable at target x̃∗ with τL(x∗) = x̃∗ and Lyapunov
function L̃.

Proof. We first derive the transformation properties for
the Lyapunov candidate. Note, that the dependence on
the Lyapunov candidate L will be omitted in the following
for notational simplicity, i.e. τ = τL. Scalar functions
such as Lyapunov candidates show the following forward
and backward transformation behavior

L(x) = L̃(τ(x)) and L̃(x̃) = L(τ−1(x̃)) , (24)

while these equations hold for x ∈ Ω and x̃ ∈ Ω̃. This
transformation behavior is important for the investigation
of the differential information of the Lyapunov candidates

in the different spaces. The gradient of the Lyapunov can-
didate thus transforms according to

∇L(x) = Jτ (x) · ∇̃L̃(x̃) , (25)

where (Jτ (x))ij = ∂
∂xi

τj(x) is the Jacobian matrix for the
diffeomorphism τ at point x. A vector field y(x) can also
be represented in both spaces. The transformation behav-
ior of the dynamical system is the following

y(x) =

d∑
k=1

d∑
j=1

(J−Tτ (τ(x)))ji · ỹi(τ(x))

= J−Tτ (x̃) · ỹ(x̃) .

(26)

where (J−Tτ (τ(x)))ij is the transpose of the inverse Jaco-
bian matrix ∂

∂x̃i
τ−1
j (x̃) for the function τ at point x. These

identities hold because of the diffeomorphic properties of
τ . The mathematical justification is given by the inverse
function theorem, which states that the inverse of the Ja-
cobian matrix equals the Jacobian of the inverse function.

The following equations show that L is an actual Lya-
punov function for the dynamical system y(x). Per defi-
nition, L satisfies (i) and (ii) of Lyapunov’s conditions for
asymptotic stability stated in theorem 1. We thus focus
on condition (iii)

L̇(x∗) = (y(x∗))T∇L(x∗)

= (J−Tτ (x̃∗) · ỹ(x̃∗)︸ ︷︷ ︸
=0 FP

)T · ∇L(x∗)︸ ︷︷ ︸
=0 (iii)

= 0 , (27)

which is also satisfied. The main requirement for the proof
of the proposition is that condition (iv) is fulfilled. It
states that the dynamical system, which is stable with a
quadratic Lyapunov function in the transformation space,
becomes asymptotically stable according to the previously
defined Lyapunov candidate function L in the original space
Ω after back transformation. The Lyapunov candidate L
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thus becomes a Lyapunov function.

L̇(x) = (y(x))T · ∇L(x)

=
(
J−Tτ (x̃) · ỹ(x̃)

)T · Jτ (x) · ∇̃L̃(x̃)

= ỹ(x̃)T · J−1
τ (x̃) · Jτ (x) · ∇̃L̃(x̃)

= ỹ(x̃)T · ∇̃L̃(x̃)

= ˙̃L(x̃) < 0 : ∀x̃ ∈ Ω̃, x̃ 6= x̃∗

⇒ L̇(x) < 0 : ∀x ∈ Ω,x 6= x∗ ,

(28)

where Eq. (25) and Eq. (26) were used for derivation.

It is of great interest how this framework affects the ap-
proximation capabilities of the underlying approach during
transformation. It can be shown that the approximation
is optimal in least squares sense which is summarized in
the following proposition.

Proposition 2. Assume that the same prerequisites as in
Prop. 1 are given. Then, it holds for all L ∈ L that the
dynamical system y : Ω→ Ω approximates the data D in
least squares sense if and only if ỹ(x) approximates the
transformed data set D̃ in least squares sense.

Proof. We assume that the mapping in the transformed
space according to the learner ỹ : Ω̃→ Ω̃ approximates the
data set D̃ = (x̃(k), ṽ(k)) = (τL(x(k)), JTτ (x(k)) · v(k)),
i.e. that the learner itself is continuous and minimizes the
following error

Ẽ =

N∑
k=1

‖ỹ(x̃(k))− ṽ(k)‖2 → min . (29)

The error in the original space Ω for a given data set D
and a back-transformed dynamical system y and the cor-
responding data set D̃ in the transformed space Ω̃ learned
by ỹ is given by

E =

N∑
k=1

‖y(xi(k))− vi(k)‖2

=

N∑
k=1

‖J−Tτ (τ(xi(k)))
[
ỹ(τ(xi(k)))− ṽi(k)

]
‖2

=

N∑
k=1

‖ J−Tτ (x̃i(k)))︸ ︷︷ ︸
fixed

· [ỹ(x̃i(k))− ṽi(k)]︸ ︷︷ ︸
minimized in Eq. (29)

‖2 → min

(30)

This shows that the error E is decreasing for a given fixed
transformation τ if the error in the transformed space Ẽ
is minimized because L̃ and D̃ are consistent.

Note, that the proposition gives no specific information
about the construction of the Lyapunov candidate and the
diffeomorphism. The following sections introduce and rig-
orously analyze possible Lyapunov candidates and a cor-
responding diffeomorphism.

5. Learning Complex Lyapunov Candidates

This section investigates step 1) in Alg.1, the construction
or learning of Lyapunov candidates from demonstrations.

5.1. Weighted Sum of Asymmetric Quadratic Functions
(WSAQF)

The construction of valid Lyapunov candidates can be
done in various ways. One option is to model the can-
didate function manually. However, this is potentially dif-
ficult and time consuming. We therefore suggest to ap-
ply automatic methods to learn valid Lyapunov candidate
functions from data. A method that constructs Lyapunov
candidates in a data-driven manner is the already men-
tioned weighted sum of asymmetric quadratic functions
(WSAQF) [16]. The following equations describe the re-
spective parametrization.

L(x) = xTP 0x +

L∑
l=1

βl(x)
(
xTP l(x− µl)

)2
, (31)

where we set x∗ := 0 for convenience. L is the number of
used asymmetric quadratic functions, µl are mean vectors
to shape the asymmetry of the functions, and P l ∈ Rd×d
are positive definite matrices. The coefficients β are de-
fined according to the following

βl(x) =

{
1 : xTP l(x− µl) ≥ 0
0 : xTP l(x− µl) < 0

, (32)

Khansari-Zadeh et al. state that this scalar function is
continuous and continuously differentiable. Furthermore,
the function has a unique global minimum and therefore
serves a potential control Lyapunov function. Learning
is done by adaptation of the components of the matrices
P l and the vectors µl in order to minimize the following
constrained objective function

min

Ntraj∑
i=1

Ni∑
k=1

1 + w̄

2
sign(ψik)ψik

2
+

1− w̄
2

ψik
2

subject to P l � 0 : l = 0, . . .L

, (33)

where � denotes the positive definiteness of a matrix and
w̄ is a small positive scalar. The function ψ is defined
according to the following

ψik =
∇L(xi(k))Tvi(k)

‖∇L(xi(k))T ‖ · ‖vi(k)‖
, (34)

We show that this scalar function is a valid Lyapunov can-
didate.

Lemma 1. The WSAQF approach L : Ω→ R is a (global)
Lyapunov candidate function according to Def. 2 and it
holds that (x− x∗)T · ∇L > 0.
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Proof. Obviously, condition (i), (ii), and (iii) in Def. 2
are fulfilled. The function is also continuous and continu-
ously differentiable despite the switches of β from zero to
one or vice versa. In order to analyze condition (iv), the
gradient is calculated.

∇L = (P 0 + P 0T )x +

L∑
l=1

2βl(x)xTP l(x− µl) ·
[
(P l + P l

T
)x− P lµl

] , (35)

Condition (iv) holds because of the following inequality
that demonstrates that L becomes a valid Lyapunov can-
didate according to Def. 2. Note that we still set x∗ := 0
for convenience without losing generality.

xT · ∇L = xT (P 0 + P 0T )x +

L∑
l=1

2βl(x)xTP l(x− µl) ·
[
xT (P l + P l

T
)x− xTP lµl

]
︸ ︷︷ ︸

xTP l(x−µl)+xTP lTx

= xT (P 0 + P 0T )x︸ ︷︷ ︸
>0

+

L∑
l=1

2βl(x)︸ ︷︷ ︸
≥0

(
xTP l(x− µl)

)2︸ ︷︷ ︸
≥0

+ 2βl(x)xTP l(x− µl)︸ ︷︷ ︸
≥0

xTP l
T
x︸ ︷︷ ︸

>0

 > 0 : ∀x ∈ Ω ,

(36)

where P l are positive definite matrices and Ω = Rd. Please
note that the transpose of a positive definite matrix is also
positive definite. The WSAQF approach indeed constructs
Lyapunov candidates that are radially unbounded because
of its specific structure.

L(x) = xTP 0x︸ ︷︷ ︸
‖x‖→∞⇒∞

+

L∑
l=1

βl(x)
(
xTP l(x− µl)

)2︸ ︷︷ ︸
≥0

. (37)

such that the WSAQF approach becomes a globally de-
fined Lyapunov candidate.

Also different methods to learn Lyapunov candidates are
potentially applicable as long as the learned function sat-
isfies the conditions in Def. 2.

5.2. Neurally-Imprinted Lyapunov Candidates (NILC)

The learning or construction of appropriate Lyapunov can-
didate functions from data is challenging. In previous
work [19], we have already introduced a neural network
approach called neurally imprinted Lyapunov candidate
(NILC). This approach learns Lyapunov candidates L :
Ω→ R that are smooth and well suited to shape dynamical
systems that in earlier work have been learned with neu-
ral networks as well [8]. We briefly introduce the method
from [19].

Consider a neural network architecture which defines
a scalar function L : Rd → R. This network comprises
three layers of neurons: x ∈ Rd denotes the input, h ∈ RR
the hidden, and L ∈ R the output neuron. The input is
connected to the hidden layer through the input matrix
W inp ∈ RR×d which is randomly initialized and stays fixed
during learning. The read-out matrix comprises the pa-
rameters subject to learning which is denoted byW out ∈ RR.
For input x the output neuron is thus given by

L(x) =

R∑
j=1

W out
j f(

d∑
n=1

W inp
jn xn + bj) , (38)

The main goal is to minimize the violation of the training
data and the candidate function by making the negative
gradient of this function follow the training data closely.
A quadratic program is defined

1

Nds

Ntraj∑
i=1

Ni∑
k=1

(
‖ − ∇L(xi(k))− vi(k)‖2 +

. . . + εRR‖W out‖2
)
→ min

Wout
,

(39)

subject to the following equality and inequality constraints
corresponding to Lyapunov’s conditions (i)-(iv) in theo-
rem 1 such that L becomes a valid Lyapunov candidate
function

(a) L(x∗) = 0 (b) L(x) > 0 : x 6= x∗

(c) ∇L(x∗) = 0 (d) xT∇L(x) > 0 : x 6= x∗
(40)

where the constraints (b) and (c) define inequality con-
straints which are implemented by sampling these con-
straints. The gradient of the scalar function defined by
the network in Eq. (38) is linear in W out and given by

(∇L(x))i =

R∑
j=1

W out
j f

′
(

d∑
k=1

W inp
jk xk + bj) ·W inp

ji , (41)

where f
′

denotes the first derivative of the Fermi function.
The disadvantage of this approach is that the Lyapunov
candidate is not globally valid. It can be extended towards
predefined but finite regions. Interestingly, this candidate
also fulfills the following condition: (x − x∗)T · ∇L > 0,
which is important for the diffeomorphic transformation
that is defined in the following section. The result of
this constructive approach is summarized in the following
lemma:

Lemma 2. The NILC approach L : Ω → R is a (local)
Lyapunov candidate function according to Def. 2 and it
holds that (x− x∗)T · ∇L > 0.

The previous section revealed that arbitrary Lyapunov
function candidates are applicable for the learning of sta-
ble dynamical systems, if a diffeomorphism is given that
transforms this candidate into a quadratic function. The
following section defines and investigates a corresponding
diffeomorphism for the NILC and the WSAQF Lyapunov
candidate approaches.
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6. Coping with Complex Lyapunov Candidates:
The Diffeomorphic Candidate Transformation

This section defines step 2) of Alg.1 in detail. In order to
allow an implementation of flexible Lyapunov candidates
L : Ω → R, a diffeomorphic candidate transformation τ :
L × Ω→ Ω̃, x 7→ x̃ is defined as follows

τL(x) =

{√
L(x) · x−x∗

‖x−x∗‖ if x 6= x∗

x∗ if x = x∗
. (42)

This mapping transforms each Lyapunov candidate L ac-
cording to Def. 2 into a quadratic function L̃ : Ω̃ → R,
x̃ 7→ x̃2 stated by the following lemma.

Lemma 3. The mapping τ : L×Ω→ Ω̃ is a diffeomorphic
candidate transformation according to Def. 3 that corre-
sponds to the set of Lyapunov candidates L where each
element L ∈ L fulfills (x − x∗)T · ∇L > 0 : x ∈ Ω,
i.e. τL : Ω → Ω̃ is bijective, continuous, continuously
differentiable, and the inverse mapping τ−1

L : Ω̃ → Ω is
also continuous and continuously differentiable. Further,
τ transforms functions L ∈ L to the fixed quadratic func-
tion L̃ : Ω̃→ R, x̃ 7→ x̃2.

Proof. We again define τ := τL and set x∗ = 0 for conve-
nience. At first, it is obvious that τ : Ω→ Ω̃ is continuous
and continuously differentiable, because L is continuous
and continuously differentiable. Importantly, the diffeo-
morphism is injective, i.e.

∀x1,x2 ∈ Ω : (x1 6= x2 ⇒ τ(x1) 6= τ(x2)) (43)

If x1,x2 ∈ Ω are arbitrary vectors with x1 6= x2 and x1,2 6=
0, four different cases are distinguished

(1) L(x1) 6= L(x2) and x1 � x2

(2) L(x1) = L(x2) and x1 � x2

(3) L(x1) 6= L(x2) and x1 ∼ x2

(4) L(x1) = L(x2) and x1 ∼ x2 ,

(44)

where x ∼ y means that there exists a real number λ > 0
for which x = λy holds. Cases (1) and (2) are unproblem-
atic because τ(x1) 6= τ(x2) directly follows from x1 � x2.
In order to analyze case (3), we calculate the directional
derivative of L along the direction of x which exists due
to the total differentiability of τ and satisfies the following
inequality

∇xL(x) = xT∇L(x) > 0 . (45)

This is directly according to condition (iv) of the con-
sidered Lyapunov candidate. L is thus strictly mono-
tonically increasing along a given direction in Ω. With
L(x1) 6= L(x2) we therefore infer that ‖τ(x1)‖ 6= ‖τ(x2)‖
and thus τ(x1) 6= τ(x2). Case (4) is invalid, because
L(x1) = L(x2) ⇒ ‖τ(x1)‖ = ‖τ(x2)‖ and with x1 ∼ x2

it follows that x1 = x2 which is in contradiction to the
assumption that x1 6= x2. Therefore, τ is injective. It

directly follows that τ : Ω → Ω̃ is surjective because Ω̃ is
the image of τ and thus bijective.
The inverse function τ−1 : Ω̃→ Ω exists because of the bi-
jectivity and is continuous and continuously differentiable.
The reason is that the directional derivative of L(x) along
x is strictly monotonically increasing.
In order to show that the diffeomorphism τ maps each L
onto the fixed function L̃ : Ω̃ → R, x̃ 7→ x̃2, the following
equivalence holds per definition

‖τ(x)‖ =
√
L(x)⇔ ‖τ(x)‖2 = L(x) . (46)

The transformed function becomes quadratic with the use
of Eq. (46)

L̃(x̃) = L(τ−1(x̃)) = ‖τ(τ−1(x̃))‖2 = ‖x̃‖2 . (47)

Each Lyapunov candidate that satisfies (x−x∗)T ·∇L > 0
(such as the NILC and the WSAQF approach) and the
diffeomorphism in Lem. 3 are therefore applicable for im-
plementation of flexible and desired Lyapunov candidates
with the τ -SEDS approach.

In this particular case, the Jacobian Jτ (x) of the diffeo-
morphism τL can be derived analytically. We again set
x∗ = 0 for simplicity.

Jτ (x)ij =
∂

∂xi
τj(x)

=
∂

∂xi

√
L(x) · xj

‖x‖

Jτ (x) =
∇L(x)

2
√
L(x)

· xT

‖x‖
+
√
L(x)

(
I

‖x‖
− xxT

‖x‖3

)
,

(48)

where I ∈ Rd×d is the identity matrix, L(x) is the Lya-
punov candidate and ∇L(x) denotes the gradient of the
Lyapunov candidate. It is important to note that this
Jacobian has a removable singularity at x = 0 and is
thus well-defined for the limit case of ‖x‖ → 0 where
Jτ (x) = 0 : x = 0.

This approach based on the framework for diffeomor-
phic candidate transformations τ introduced in this sec-
tion that applies SEDS and WSAQF or NILC as a basis
for learning is called τ -SEDS (WSAQF, NILC) or simply
τ -SEDS in the following. Note that this theoretical frame-
work is not restricted to the special forms of the used ap-
proaches and thus serves as fundamental framework for
learning complex motions under diffeomorphic transfor-
mations.

7. Experimental Results

This section introduces the experimental results obtained
for the different approaches and compares them qualita-
tively and quantitatively. This comprises the steps 3) to
5) of Alg.1.
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Figure 4: Lyapunov candidate constructed by the WSAQF approach (first row), and Lyapunov candidate originating from the NILC approach
(second row). Desired Lyapunov function L and data set D in the original space Ω (first column). Transformed Lyapunov function L̃ and
transformed data set D̃ in Ω̃ (second column). Dynamical system ỹ learned by SEDS using data set D̃ which admits to a quadratic Lyapunov
function in the transformed space Ω̃ (third column). The result y in Ω after applying the inverse transformation τ−1 of ỹ (fourth column).

7.1. Reproduction Accuracy

To measure the accuracy of a reproduction is an important
tool to evaluate the performance of a movement generation
method. We use the swept error area5 (SEA) as an error
functional to evaluate the reproduction accuracy of the
methods. It is computed by

E =
1

N

Ntraj∑
i=1

Ni−1∑
k=1

A
(
x̂i(k), x̂i(k+1),xi(k),xi(k+1)

)
(49)

where x̂i(·) is the equidistantly re-sampled reproduction of
the demonstration xi(·) with the same number of samples
N i and A(·) denotes the function which calculates the area
of the enclosed tetragon generated by the four points x̂i(k),
x̂i(k+1), xi(k), and xi(k+1).

7.2. Illustrative Example: τ -SEDS

This experiment illustrates the processes of diffeomorphic
transformation and learning of the SEDS approach in com-
bination with the WSAQF and NILC Lyapunov candi-
dates. The experimental results are again obtained for a
sharp-C-like movement from a library of 30 human hand-
writing motions called LASA data set [14]. This data pro-
vide realistic handwritten motions and is used in several

5This measure was first defined in [16].

different studies about the learning of dynamical systems
applied for movement generation [13, 19, 8]. As mentioned,
the movement violates a quadratic Lyapunov candidate
(shown in Fig. 1). The previously introduced Lyapunov
candidates are used for transformation and comparison.
The first candidate function is constructed by means of
the NILC technique [19] (results shown in first row). The
second function is obtained with the WSAQF approach
(second row). Learning in the transformed space is done
by SEDS6, which is initialized with K = 5 Gaussian func-
tions and trained for maximal 500 iterations. The function
τ (see Eq. (42)) is used as corresponding diffeomorphic
candidate transformation.

Fig. 4 illustrates the intermediate steps obtained dur-
ing the learning and transformation phase. The plots in
the first column in Fig. 4 show the different Lyapunov can-
didates that are consistent with the respective six demon-
strations. The training data set D is then prepared for
learning by transforming the data set into D̃ that is de-
fined in the transformed space which is consistent with
a quadratic Lyapunov candidate L̃(x̃). The result of the
data transformation and the Lyapunov candidate is illus-
trated in Fig. 4 (second column). We then apply the SEDS
learning approach to obtain ỹ which is stable according
to a quadratic Lyapunov function L̃ in Ω̃ after learning

6We used the SEDS software 1.95 by Khansari-Zadeh et al. [22]
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Figure 5: Explicit stabilization of the sharp-C-shape through CLF. A Lyapunov candidate function learned with the WSAQF approach (top
left). An unstable dynamical system of six demonstrations with GMR (top second). The stabilized system for three demonstrations with
parameter ρ0 = 10 (top third), ρ0 = 1000 (top fourth), ρ0 = 100000 (top fifth). SEA of the stabilized system with changing ρ0 (bottom).

the data D̃. The result of the learning is depicted by the
dynamic flow after learning the transformed demonstra-
tions D̃ in Fig. 4 (third column). It is illustrated that the
new data is not violating the quadratic function and thus
allows an accurate modeling of the data. Finally, the in-
verse transformation τ−1

L is used to obtain the dynamics
y for the original data D in the original space Ω (step 5).
Eq. (18) was used for back-transformation. Note that the
obtained vector field has no discontinuities and provides
a gentle generalization of the applied data set D irrespec-
tive of the used Lyapunov candidate L, see Fig. 4 (fourth
column).

The experiment shows that the class of learnable demon-
stration of SEDS is enhanced by means of the proposed
framework based on diffeomorphic transformations. The
experiment also reveals that the generalization capability
of the learner transfers to the original space which is an
important prerequisite for such systems. Please compare
the results of this experiment to Fig. 1 and Fig. 3.

7.3. Investigating the Control Lyapunov Approach

The explicit stabilization during runtime with online cor-
rections of the learned dynamical system in the CLF-DM
approach is parameterized with ρ0 and κ0 defining the
function ρ(‖x‖), see Eq. (13), which shifts the activation
threshold of a correction signal u(x). Basically, two funda-
mental problems concerning these parameters are inherent
to this approach. First, the parameters should be selected
and scaled according to the scalar product ∇L(x)T ŷ(x)
in order to allow an appropriate stabilization, where ŷ is
defined according to Eq. (12). The optimization process of
these parameters is independent of the actual learning of
the Lyapunov candidate L, hence, the learning of ŷ con-
stitutes a separate process. Optimization of these param-

eters usually requires several iterations and is thus com-
putationally expensive. Second, the parameters can only
deal with a finite range of the scalar product ∇L(x)T ŷ(x).
This is particularly problematic whenever the scalar prod-
uct is too small in some region and at the same time too
big for ρ(‖x‖) in another. This can lead to inaccurate re-
production capabilities or numerical integration problems.
The respective parameterization appears to be too sim-
ple in such situations. However, the introduction of more
parameters is unsatisfying.

Fig. 5 demonstrates the effect of the parameterization
and shows the learning of six demonstrations by means of
the CLF approach. The first two plots in the figure shows
the result of the WSAQF approach for learning the Lya-
punov candidate (top first) and the learning of the dynam-
ical system by means of the Gaussian mixture regression
(GMR) approach (top second). As expected, the simple
GM regression method results in an unstable estimate of
the three demonstrations. The second row of Fig. 5 shows
the experimental results. We selected κ0 = 0.05 which re-
mains fixed, and varied ρ0 in the range from [10, 100000]
logarithmically in 11 steps. We recorded the SEA measure
in this experiment. The bottom plot of Fig. 5 shows the
SEA of the demonstrations and the respective reproduc-
tions. It is demonstrated that the reproduction accuracy
decreases with increasing ρ0. For small ρ0, the reproduc-
tion accuracy is high, while for big ρ0, the reproductions
become inaccurate. In this case, the reproduction is forced
to converge faster and thus follows the gradient of the Lya-
punov candidate rather than the demonstrations. How-
ever, a too strong reduction of ρ0 is also an insufficient
strategy. The reason is that the correction signal is too
small and can hinder convergence to the target attractor
by induction of numerical spurious attractors. This is es-
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pecially problematic if perturbations are present and drive
the trajectory in such a spurious attractor. This can be
avoided by increasing ρ0 which simultaneously increases
the CS and thus “overwrites” the numerical attractors.
These both facts introduce a trade-off in the CLF approach
for which a careful parameter selection is necessary.

The three top right plots in Fig. 5 visualize these sit-
uations for ρ0 = 10, 1000, 100000 from left to right. The
plots comprise the demonstrations used as training data
(black trajectories), the reproduction by the dynamical
system (red trajectories), the dynamical flow (blue tra-
jectories and arrows), and a trajectory (green trajectory)
that was iterated for one hundred steps. Overall, the left
plot shows good reproduction accuracy but also a spurious
numerical attractor at the end of the green trajectory; the
center plot shows a good reproduction and convergence
capability for which tuning the CLF parameters was suc-
cessful; and the right plot shows a correction signal that
is too strong which results in a poor reproduction of the
demonstrations and a strong convergence behavior.

These effects are especially problematic if we assume
that two different Lyapunov candidates L ∼ L′ are given,
which are equivalent in the sense that their gradients point
into the same direction: ∇L ∼ ∇L′. These functions can
be transformed into each other by means of a continu-
ously differentiable function ϕ(L) : R → R with ϕ(0) = 0
and ∂

∂Lϕ > 0. This has a direct influence on the dif-
feomorphic transformation which copes with the function
ϕ(L(x)) : Ω → R. Only the training data D̃ in the trans-
formed space Ω̃ looks different. These changes disappear
after back transformation of the dynamical system into the
original space. In contrast, the parameters κ0 and ρ0 of
the correction signal are not automatically related to ϕ and
need to be re-tuned whenever a new Lyapunov candidate
is applied.

In summary, this sensitivity of the CLF approach to
the parameters of the runtime correction is unsatisfactory
to the degree that a separate optimization process -which
is computationally costly- is required. The diffeomorphic
transformation approach τ -SEDS, however, requires no ad-
ditional parameters since it merges the learning of the
Lyapunov candidate and the actual dynamics through the
SEDS approach.

7.4. Performance Experiments

This experiment compares the proposed approach τ -SEDS
with the state of the art methods and SEDS as baseline
in a qualitative and quantitative manner. The perfor-
mance of the different approaches is analyzed on the LASA
data set [14]. For evaluation, we use the neurally im-
printed Lyapunov candidate (NILC) and the weighted sum
of asymmetric quadratic functions (WSAQF) approach as
Lyapunov candidates and combine them with Gaussian
mixture regression through the control Lyapunov func-
tion - dynamic movements (CLF-DM) approach; the sta-
ble estimator of dynamical systems through the diffeomor-
phic transformation (τ -SEDS) approach; and neurally im-
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Figure 6: The SEA for the different method combinations on the
library of 30 handwritten motions.

printed vector fields (NIVF) through quadratic program-
ming. The accuracy of the reproductions is again mea-
sured according to the SEA. The results are stated in
Fig. 6.

The WSAQF Lyapunov candidates are learned and op-
timized according to the following: the trade-off param-
eter w̄ = 0.9 is fixed; an additional regularization term7

λ·‖θ‖2 is added in order to obtain smoother functions; and
the number of asymmetric functions L is increased until a
minimum of the violation between Lyapunov candidate L
and demonstrations D is observed. The NILC candidates
are based on a network with R = 100 hidden neurons
where the regularization parameter is decreased from 100

to 10−5 logarithmically in 5 equidistant steps until the vi-
olation reaches a minimum. The Lyapunov properties are
validated in NC = 105 uniformly distributed samples8.

The results for each shape are averaged over ten ini-
tializations. The SEDS and GMR models where initialized
with K = 7 Gaussian functions in the mean square error
(MSE) mode and trained for maximally 1500 iterations.
The parameters of the CLF integration were selected from
9 logarithmically equidistant steps from 10−6 to 103.

The experiments first reveal that the average SEA of
the SEDS approach is extraordinary large in comparison
to the other approaches. The reason is that some of the 30
shapes (e.g. the sharp-C-shape) are violating a quadratic
Lyapunov candidate function. This leads to inaccurate re-
productions and thus to a poor average performance, be-
cause these shapes are principally not learnable by SEDS.

7θ = {P 0, . . . , PL, µ0, . . . , µL} collects all parameters of the
WSAQF approach. λ = 0.1 in the experiments.

8see [19] for details
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Approach (LC) Dynamics Stability Integration

SEDS (Quad.) L = x̃T x̃ Global Yes
CLF-DM (NILC) x̃T∇L > 0 Local No
CLF-DM (WSAQF) x̃T∇L > 0 Global No
NIVF (NILC) x̃T∇L > 0 Local Yes
NIVF (WSAQF) x̃T∇L > 0 Local Yes
τ -SEDS (NILC) x̃T∇L > 0 Local Yes
τ -SEDS (WSAQF) x̃T∇L > 0 Global Yes

Table 1: Qualitative comparison of the different method combina-
tions. The τ -SEDS (WSAQF) approach is promising. Approaches
which use the NILC approach as Lyapunov candidate cannot guar-
antee stability globally.

The performance of the dynamical systems explicitly
stabilized by the CLF approach is significantly better than
for the original SEDS approach, but slightly worse than
for the other approaches. This is due to the fact that
the selection of the CLF parameters was restricted to a
discrete set of variables and that the parameterization of ρ
is insufficient for learning of some of the shapes. However,
the learning performance can in principle be increased but
would demand more computational resources.

The τ -SEDS and the NIVF approach reach the best
results among the tested methods. The difference in the
results originating from the two Lyapunov candidates are
non-negligible. The WSAQF approach performs slightly
better than the NILC due to the fact that the error func-
tional also directly implements a reduction of the viola-
tion, see Eq. (33). The simple alignment of the candi-
dates’ gradient and the velocity of the demonstrations is
-in some cases- not sufficient to implement a violation-free
Lyapunov candidate with NILC. In fact, it is also possible
to use the learning functional of the WSAQF approach for
the NILC approach and vice versa.

An additional qualitative summary of the several ap-
proaches can be found in Tab. 1. The table assigns three
important properties to the discussed approaches. The
first property is the class of learnable functions. SEDS is
in principle restricted to dynamics that satisfy a quadratic
Lyapunov function. All other approaches allow much larger
classes of dynamics irrespective if the NILC or the WSAQF
approach are applied. The second column states the range
of the stability property and distinguishes between local
and numerical stability guarantees or constructively proven
global asymptotic stability. The last column in the table
states that the Lyapunov candidate is integrated into the
learning procedure. This is not the case for the CLF-DM
approach because stabilization is only applied online. The
τ -SEDS (WSAQF) approach appears to be the only ap-
proach which provides a large class of learnable demonstra-
tions, allows global stability that is proven constructively
and integrates the Lyapunov candidate into the learning
of the dynamical system directly while simultaneously per-
forming in a reliable manner. We provide the results for
this approach for all 30 movements in Fig. 7.

8. Robotics Experiment

We apply the presented approach in a robotic scenario in-
volving the humanoid robot iCub [23]. Such robots are
typically designed to solve service tasks in environments
where a high flexibility is required. Robust adaptability
by means of learning is thus a prerequisite for such sys-
tems. The experimental setting is illustrated in Fig. 8
(left). A human tutor physically guides iCub’s right arm
in the sense of kinesthetic teaching using a recently estab-
lished force control on the robot. The tutor can thereby
actively move all joints of the arm to place the end-effector
at the desired position. Beginning on the right side of the
workspace, the tutor first moves the arm around the obsta-
cle on the table, touches its top, and then moves the arm
towards the left side of the obstacle were the movement
stops. This procedure is repeated three times.

The recorded demonstrations comprise betweenNtraj =
542 and Ntraj = 644 samples. We apply the original SEDS
and τ -SEDS (WSAQF) approach to learn the demonstra-
tions and equip SEDS in both cases with K = 5 Gaussians
and iterate for maximally 1500 steps. The WSAQF was
parameterized with λ = 0.01 and w̄ = 0.9 and comprised
L = 3 basis functions. The results of the experiment are
visualized in Fig. 8. The center plot of the figure shows
the result of learning the robot demonstrations with the
SEDS approach. The dynamical system constructed by
SEDS is not able to follow the demonstrations because the
dynamics are restricted to a quadratic Lyapunov function.
The right plot of Fig. 8 visualizes the back transforma-
tion of the SEDS dynamics into the original space which
yields good reproductions while simultaneously guarantee-
ing asymptotic stability by construction. A closer inspec-
tion reveals that the reproductions from the learned dy-
namical system actually both are smoother and emphasize
more clearly the main feature of the touching the upmost
point of the tower, thereby not smoothing out this impor-
tant feature of the demonstrated movement.

9. Discussion

The experimental results obtained by application of the
theoretically derived framework substantiates the success
of this transformation procedure. Proposition 1 and Propo-
sition 2 left many degrees of freedom that can be used in
different ways as we performed in this paper. Therefore,
many questions arise that we discuss in this chapter. It is,
however, important to note that the majority of the an-
swers given are based on empirical observations and con-
jectures. We nevertheless believe that these points are
interesting to focus on in the recent future.

• What are “good” Lyapunov candidates? One of the
main requirements on Lyapunov candidates is that
they are consistent with the demonstrations - learn-
ing thus appears as a method of choice to obtain an
appropriate candidate. Another important point is
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Figure 7: The collection of Lyapunov candidates constructed with the WSAQF approach for the 30 handwritten motions (left block). The
corresponding dynamical systems constructed with the τ -SEDS (WSAQF) approach. This approach generates accurate and stable movements.

that robotics movements should be smooth. Strong
accelerations are undesired because they are danger-
ous, both, for humans in the vicinity of the robot
and for the robot itself. The applied Lyapunov can-

didate is a major factor concerning the smoothness of
the resulting dynamics. The construction of smooth
scalar functions that reduce the risk of undesired
jerkiness is thus indispensable.
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Figure 8: Kinesthetic teaching of iCub and the results of the iCub experiment. The tutor moves iCub’s right arm from the right to the left
side of the small colored tower (left). Reproduction (red) of the demonstrated trajectories (black) in meter by the original SEDS approach
(center) which is inaccurate. The reproductions of τ -SEDS with WSAQF candidate according to the back transformation in the original
space Ω are accurate and stable (right).

• What is the class of learnable dynamics? The class of
learnable dynamics is mainly driven by the Lyapunov
candidate function (WSAQF, NILC). The diffeomor-
phic candidate transformation τL : Ω → Ω̃ defined
in Eq. (42) requires Lyapunov candidates that ful-
fill the inequality (x − x∗)T · ∇L > 0, see Eq. (36).
Hence, the class is indeed restricted but still much
larger than for quadratic Lyapunov candidates. It
is nevertheless worth to investigate Lyapunov candi-
dates and diffeomorphic candidate transformations
that allow more complex dynamics or even universal
approximation capabilities.

• What are “good” diffeomorphisms? It is clear that
the diffeomorphic candidate transformation τ has an
impact on the resulting dynamics. The differential
properties of the learned dynamical system transfer
via τL into the original space. It is, however, unclear
how the properties change after back transformation.
We believe that the diffeomorphism should be curved
only as much as necessary (to obtain the quadratic
Lyapunov candidate) and as less as possible (to keep
the differential properties rather unchanged).

• What is the role of the learner? The learner is cer-
tainly the major ingredient for a successful learning
of a non-linear dynamical system. Different proper-
ties are very important, such as the generalization
ability, the smoothness of the solution and the space
Ω̃ for which asymptotic stability can be guaranteed.
SEDS, e.g., is globally stable (Ω̃ = Rd) which results
also in a global solution after back transformation if
the Lyapunov candidate is also globally (such as the
WSAQF approach) valid in Ω = Rd.

• How is the generalization ability of the learner af-
fected by the transformation? The learner is sup-

posed to minimize the error in the transformed space
Ω̃. However, the back transformation changes the er-
ror values according to Eq. (30). The experiments
showed that this had no negative effect but without
any theoretical justification.

• How is the proposed approach related to the idea
of movement primitives? One of the key features
of movement primitives is that they can be super-
imposed to create more complex motions without
inducing unstable behavior. The super-position of
models based on the original SEDS formulation in-
cludes this feature of stability but is restricted to
the same class of learnable dynamics as the SEDS
approach itself, i.e. superimposed SEDS movements
are stable according to a quadratic Lyapunov func-
tion. The resulting dynamics of two super-imposed
τ -SEDS models are not necessarily stable because of
the potentially different underlying Lyapunov candi-
dates used for transformation. It is nevertheless pos-
sible to guarantee stability of the resulting dynamics
if the used Lyapunov candidates are identical. How
to chose an applicable Lyapunov candidate which
satisfies the requirements of all demonstrations at
the same time is yet unclear.

• Is the robot’s stability guaranteed? It is mathemati-
cally proven that the dynamical systems used for mo-
tion control of the robot are stable if used the men-
tioned movement primitive approaches. This does
not necessarily mean that the movement of the real
robot is also stable. However, several recent exper-
imental results showed that this seems practically
irrelevant.

The answering to these questions will be left for future
research. The following section concludes the paper.

16



10. Conclusion

SEDS is a very exciting approach to learn dynamical sys-
tems while simultaneously ensuring global asymptotic sta-
bility. One of the main advantages is that SEDS guar-
antees stability of point-to-point movements globally by
construction. However, the class of dynamics that are
accurately learnable is restricted to be consistent with
a quadratic Lyapunov function. This property is unde-
sired because it effectively prevents the learning of complex
movements.

Other approaches such as CLF-DM or NIVF enable
learning of larger sets of dynamics. However, not with-
out the disadvantages of a correction signal or the lack of
constructive mathematical guarantees.

This paper therefore proposes a theoretical framework
that enhances the class of learnable movements by em-
ploying SEDS9 indirectly after a diffeomorphic transforma-
tion. In comparison to the state of the art, the proposed
τ -SEDS (WSAQF) approach appears to be the only ap-
proach which provides a large class of learnable demonstra-
tions, allows global stability that is proven constructively
and integrates the Lyapunov candidate into the learning
of the dynamical system directly while simultaneously per-
forming in a reliable manner.

The key idea is to build a flexible data-driven Lya-
punov candidate that is consistent with the given demon-
strations. The diffeomorphic candidate transformation τ
is then used to map the data set into the transformed space
where the demonstrations follow a quadratic Lyapunov
function. Learning is applied on the transformed data set
by SEDS. The learned dynamical system will then accu-
rately reproduce the demonstrations while simultaneously
satisfying the conditions for asymptotic fixpoint stability.
Finally, the back transformation of the dynamical system
is performed. Complex dynamics that are accurately fol-
lowing the original demonstrations that are at the same
time stable according to the previously defined Lyapunov
candidate are obtained; i.e. the Lyapunov candidate be-
comes a Lyapunov function for the back-transformed dy-
namics. This new approach is called τ -SEDS. Interest-
ingly, we could easily reuse the complete implementation
of the SEDS approach. This means that the framework
allows a modular implementation without much coding ef-
fort.

The theoretical results are complemented by experi-
mental results from robotics which illustrate the effect of
the learning and transformation. The generality of the
framework is demonstrated by using different Lyapunov
candidates. This emphasizes the fact that this framework
is not restricted to the special form of the Lyapunov can-
didate and the SEDS approach.

9We thank S. Mohammad Khansari-Zadeh and the LASA Lab at
EPFL for providing the open source software of SEDS.
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