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Abstract Extreme learning machines are single-hidden layer feed-forward
neural networks, where the training is restricted to the output weights
in order to achieve fast learning with good performance. The success
of learning strongly depends on the random parameter initialization.
To overcome the problem of unsuited initialization ranges, a novel and
efficient pretraining method to adapt extreme learning machines task-
specific is presented. The pretraining aims at desired output distributions
of the hidden neurons. It leads to better performance and less dependence
on the size of the hidden layer.
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1 Introduction

In [1], Huang proposes the extreme learning machine (ELM) which is an efficient
learning algorithm based on random projections. Its task performance depends
on the size of the hidden layer and the initialization ranges of the parameters. A
good performance is usually achieved by manually tuning these parameters to a
task-suitable regime.

Although, recently some improvements to the ELM have been developed,
that are based on the idea to change the hidden layer size, an automatic and
efficient task-specific optimization method for ELMs is still missing.

Feng presents a method which adds random neurons to the ELM - the error
minimized extreme learning machine (EMELM) [2]. Whereas recomputation of
the pseudo inverse is necessary, the computational time for solving the regression
task is reduced to a minimum by using fast update rules derived in the original
paper. Another idea to improve ELMs is to decrease the size of the hidden layer
- the optimally pruned extreme learning machine (OPELM) [3]. The OPELM
method starts with a large hidden layer and a ranking of the neurons. The
learning results are improved by pruning the OPELM using a leave-one-out
criterion. There is no need to specify the size of the hidden layer in advance
without knowledge of the task complexity by using these methods. However, the
results still strongly depend on the random initialization - i.e. the biases and
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input weights. Methods controlling the network size are insufficient in tuning
the neurons to a good regime, where the encoding is optimal.

It is shown in [4], that a biologically inspired online learning rule called
intrinsic plasticity (IP) published by Triesch in [5] is able to enhance the encoding
in recurrent neural networks. The output is forced by IP to produce exponential
distributions. This maximizes the network’s information transmission, caused by
the high entropy of the distribution. Inspired by IP, we propose a novel method
to pretrain ELMs, which also aims on achieving desired output distributions.
In contrast to IP, the pretraining works in batch fashion by creating imaginary
targets and will therefore be called batch intrinsic plasticity (BIP). The method
adapts the hidden layer analytically by a pseudo inverse technique instead of
performing a computationally expensive gradient-descent. This idea makes BIP
highly efficient.

The following experiments show that the new method leads to better results
for randomly initialized ELMs. In particular the generalization ability of the
networks is improved significantly.

2 Extreme Learning Machine

The ELM consists of three different layers: u ∈ RI×1 collects the input, h ∈ RR×1

the hidden, and ŷ ∈ RO×1 the output neurons. The input is connected to the
hidden layer through the input matrix W in ∈ RR×I , while the read-out matrix
W out ∈ RO×R contains the read-out weights. The ELM as it is proposed by
Huang is created by randomly initializing the input matrix, the slopes ai and
the biases bi (i = 1, . . . R) in the - typically sigmoid - activation function. Usually
the slopes are set to one. When denoting the weights from the input layer to a
specific hidden layer neuron i with W in

i ∈ R1×I , the ELM scheme then becomes

ŷ = W outh = W out
(
. . . , f

(
aiW

in
i u+ bi

)
, . . .

)T
. (1)

2.1 Supervised Read-Out Learning by Ridge Regression

Supervised learning for ELMs is restricted to the read-out weights W out. In
order to infer a desired input-output mapping from a set of Ntr training samples
(u(k), y(k)) with k = 1 . . . Ntr, the read-out weights W out are adapted such that
the mean square error for the training set is minimized:

E =
1

Ntr

Ntr∑
k=1

||y(k)− ŷ(k)||2 → min . (2)

The paper focuses on batch training and uses a standard linear ridge regression
method to control the size of the output weights. This is different to the approach
in the original ELM paper where the pseudo inverse is used. The generalization
ability of the networks is improved by that technique. The network’s states
h(k) belonging to the inputs u(k) as well as the desired output targets y(k)
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are collected in a state matrix H = (h(1) . . . h(Ntr))
T ∈ RNtr×R and a target

matrix Y = (y(1) . . . y(Ntr))
T ∈ RNtr×O. The optimal read-out weights are then

determined by the least squares solution

(W out)T =
(
HTH + ε1

)−1
HTY, (3)

where the factor ε ≥ 0 was identified by Tikhonov in [6] as output regularization
strength.

2.2 Batch Intrinsic Plasticity

The task performance of an ELM strongly depends on the random initialization
of the input matrix and the biases. Without expert-tuning by means of additional
task knowledge, a random initialization can lead to the problem of saturated,
almost linear or constant neurons. This can be avoided by finding activation
functions which are in a favorable regime. Thus, we introduce a novel method to
adapt activation functions such that certain output distributions are achieved.
An invertible activation function and a random number generator which pro-
duces numbers drawn from the desired distribution are assumed.

Only the inputs u = (u(1), u(2) . . . u(Ntr)) ∈ RI×Ntr stimulating the network
are used for optimization. The goal is to adapt slope ai and bias bi of the acti-
vation function such that the desired distribution fdes for the neuron’s outputs
hi(k) = f(aisi(k)+bi) is realized. The synaptic sum arriving at neuron i is given
by si(k) = W in

i u(k) and collected in si = W in
i u.

Therefore, a linear regression problem is formulated, where random targets
t = (t1, t2 . . . tNtr

)T are drawn in ascending order t1 < · · · < tNtr
from the

desired output distribution. Since the stimuli need to be mapped onto the right
targets, a rearrangement of the stimuli in ascending order si(1) < · · · < si(Ntr)
is done by sorting si ← sort(si). This is necessary because a monotonically
increasing activation function f is used to map all incoming training stimuli on
the right targets and infer the desired distribution fdes for the neuron’s output.
The model Φ(si) =

(
sTi , (1 . . . 1)T

)
and the parameter vector vi = (ai, bi)

T are
built to reduce the learning for the i-th neuron to a linear and over-determined
regression problem, where the outputs are mapped onto the targets hi(k) ≈ tk:

‖Φ(si) · vi − f−1(t)‖ → min . (4)

The solution for the optimal slope ai and bias bi is obtained by computation of
the Moore-Penrose pseudo inverse [7]:

vi = (ai, bi)
T = Φ†(si) · f−1(t) . (5)

Typically Fermi and tangens hyperbolicus functions are used as activation func-
tions. The learning is done in one-shot fashion and summarized in Alg. 1.

The pretraining is of the same order of complexity than the supervised read-
out learning, since only the least squares solutions of the linear model Φ have to
be calculated. In the experiments, the pretraining and the supervised learning
showed no significant difference in the computational time.
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Algorithm 1 batch intrinsic plasticity (BIP)

Require: get inputs u = (u(1), u(2) . . . u(Ntr))
T

for all hidden neurons i do
get stimuli si = W in

i · u
draw targets t = (t1, t2 . . . tNtr)

T from desired distribution fdes
sort targets t← sort(t) and stimuli si ← sort(si)
build Φ(s) =

(
sTi , (1 . . . 1)T

)
calculate (pseudo-)inverse (ai, bi)

T = vi = Φ(si)
† · f−1(t)

end for
return v = (v1, v2 . . . vR)T

3 Results

In Sect. 3.1 the impact of BIP-learning is considered and single-neuron behav-
ior is illustrated for different input and desired output distributions. Sect. 3.2
demonstrates the performance of the ELMs after pretraining on a robotics task.
Sect. 3.3 shows that the performance is less dependent on the size of the hidden
layer after pretraining the ELMs with BIP on the Abalone task from the UCI
machine learning repository [8] and compares the method to other state of the
art models.

3.1 Batch Intrinsic Plasticity and Single Neuron Behavior
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Figure 1. A neuron’s activation function adapted by BIP to approximate the output
distributions fdes while starting from the input distributions fs. The input distribution
is varied over the rows, while the output distributions varies column-wise.
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To illustrate the behavior of the BIP-learning, a single-neuron model with
different fixed input distributions fs is considered. Ntr = 50 samples are used
for training and Nte = 1000 samples are used for testing - both drawn from fs.

Three different input and output distributions are taken into account: fdes =
fs = exp(onential), norm(al), and uni(form). The moments of the distributions
are: µ(exp) = 0.2, σ(exp) = 0.2, µ(norm) = 0.5, σ(norm) = 0.1, µ(uni) = 0.5,
and σ(uni) = 0.3.

Fig. 1 illustrates the result of adapting the neuron’s nonlinear transfer func-
tion. The input distribution is assigned to the rows of the figure, while the desired
output distribution is assigned column-wise. The incoming training stimuli are
visualized by the crosses on the x-axis, while the corresponding targets are on
the y-axis. The x-axis shows a histogram of the synthetically created test stim-
uli while the y-axis shows a histogram of the outputs produced by the learned
activation function transforming the inputs. Especially when stimulated with
Gaussian input, the neuron is able to achieve the three desired output distribu-
tions very accurately - illustrated by the second row in Fig. 1. It is demonstrated
in the first column of Fig. 1 that the exponential distribution is approximated
for all inputs. However, since the sigmoid activation function has only two de-
grees of freedom, the match is typically not perfect. The figure shows that large
deviations from the optimal output distribution can sometimes be observed.

Table 1. Fits of output distributions.
A cell contains mean and standard de-
viation of the χ2-value, µ and σ.

χ2/µ/σ exp norm uni

0.49±0.36 1.04±1.04 1.83±0.37
exp 0.18±0.02 0.49±0.01 0.46±0.04

0.21±0.03 0.08±0.01 0.25±0.02

0.08±0.06 0.05±0.04 0.27±0.11
norm 0.20±0.02 0.50±0.01 0.49±0.04

0.19±0.02 0.09±0.01 0.29±0.01

0.27±0.11 0.25±0.09 1.14±0.13
uni 0.19±0.02 0.49±0.01 0.49±0.03

0.18±0.02 0.09±0.01 0.31±0.01

Table 2. Test errors on the robotics
task. Comparison of randomly initial-
ized and BIP-pretrained ELMs.

rnd ld(ε)=-15 −12 −9
BIP

R=50 .062±.003 .062±.003 .060±.002
.062±.004 .063±.004 .059±.002

100 .094±.034 .093±.032 .077±.017
.073±.014 .072±.013 .061±.002

150 .149±.076 .148±.076 .107±.042
.073±.013 .073±.013 .062±.003

200 .229±.160 .227±.158 .153±.085
.075±.015 .075±.015 .062±.003

Further statistics are summarized in Tab. 1. The table shows a neuron which
is trained by BIP for 100 trials. After each trial, the mean and the standard
deviation of the output distribution are collected as well as the χ2-value over
100 trials which determines the deviation of samples from the desired probability

distribution. The χ2-value is given by χ2 =
∑#bins

i=1
(Oi−Ei)

2

Ei
, where #bins =

20 is the number of bins equidistantly distributed in the interval [0, 1]. Ei is
the analytically given value of the integral in the i-th bin-range, and Oi is the
observed value divided by the number of test samples Nte = 1000. The table
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shows, that µ and σ of the output distribution are always approximated very
well with low variance.

3.2 Robotics Regression Task

In the following two sections the experiments are described, where the networks’
input matrix components W in

ij and the biases bi are drawn from a uniform dis-
tribution in the interval [−10, 10] while the slopes ai are set to unity. In the
experiments, the Fermi-function f(x) = 1/(1 + exp(−x)) is used as activation
function and the desired output is the exponential distribution fdes = fexp with
a fixed mean µ = 0.2. It was already shown that this choice of desired output
distribution can lead to an improvement of the generalization ability [4].
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Figure 2. Robotics task for ELMs with: R = 150 and ε = 10−12. Left: performance of
the randomly initialized ELM. Right: performance of the ELM which was first trained
with the BIP method.

The network models are applied to learn the observed inverse kinematics
mapping between joint and task space of a redundant six degrees-of-freedom
(DOF) robot arm shown in Fig. 2. Ntr = 100 training samples are generated by
projecting a task trajectory specified in Cartesian end-effector coordinates into
the joint space of the robot arm by means of the analytically calculated inverse
kinematics function F : U → Y, where U is the task and Y the joint space.
For each task space input (u1(k) . . . u6(k))T containing the end-effector position
and orientation the six-dim target vector (y1(k) . . . y6(k))T is computed and
additionally corrupted with Gaussian-noise (σN = 0.1). The generated trajectory
forms an eight - see Fig. 2. The left plot images the learned inverse kinematics for
a randomly initialized ELM, which apparently overfits the data. The right plot
shows the result of the supervised learning for an ELM which was first trained
with BIP. The learned part of the inverse kinematics is approximated very well.
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Additionally, Nte = 1000 test samples are created to verify the generalization
capability for different hidden layer sizes R and output regularization strengths
ε. The results of the experiments are summarized in Tab. 2 and done for 10
different ELMs and 10 different data sets for each cell. The results show that
the ELMs trained with BIP perform significantly better than the randomly ini-
tialized networks over the whole range of the parameters. Even ELMs with a
big hidden layer and low output regularization (e.g. with R = 200, ε = 10−15)
do not tend to overfit the data after BIP-pretraining. Also the variance in the
performance is much less after pretraining, a robust solution from the learning
can be guaranteed.

3.3 Abalone Regression Task

In this section, the performance is tested on the well known Abalone task com-
prising Ntr = 2000 samples for training and Nte = 2177 for testing. The per-
formance results of some popular optimization techniques (resource allocation
network (RAN) [9], minimum resource allocation network (MRAN) [10], incre-
mental extreme learning machine (IELM) [11], and error minimized extreme
learning machine (EMELM) [2]) on the Abalone regression task quoted from
[2] are given in Tab. 4. 20 BIP-pretrained ELMs are used with different hidden
layer sizes R, the results are summarized in Tab. 3. The input was normalized to
[−1, 1] and the output to [0, 1], the weights were drawn uniformly from [−1, 1]
and linear regression where used for supervised learning as it was done in Feng’s
work to make the results comparable. Since the mentioned models are focusing

Table 3. Test-RMSEs on Abalone task.

R 40 41 42 43 44

mean .0748 .0754 .0749 .0745 .0756

std .0005 .0014 .0012 .0004 .0020

R 45 46 47 48 49

mean .0751 .0761 .0747 .0745 .0748

std .0004 .0014 .0008 .0008 .0005

Table 4. Abalone results, [2].

model EMELM IELM

mean .0755 .0920

std .0032 .0046

model RAN MRAN

mean .1183 .0906

std .0076 .0065

on incremental growth of the hidden layer, which is different to the BIP scheme,
a direct comparison seems difficult. However, Tab. 3 shows that the ELMs of size
R = [40, 49] perform better in most of the cases than the other models without
incrementally searching for good performing networks.

4 Conclusion

This contribution introduces BIP, a novel and unsupervised scheme to pretrain
ELMs. Since the algorithm works in batch fashion, it is independent of learning
dynamics. It was shown that the new learning method produces the desired
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output distributions to some extend and leads to an improvement of the learning
for randomly initialized ELMs by task-specific pretraining - no excessive expert-
tuning is needed anymore. The method is efficient and can therefore be used
to initialize the networks input weights and biases without detailed knowledge
about the task. In addition, BIP is compared to other optimization techniques
and show that it leads to better and stable results for a specific network size.

Only the desired distribution fdes and the inverse of the activation f−1 is
needed for the method, which points out the high flexibility of the method. The
generic formulation might be used to analyze the performance of the method
with respect to other desired output distributions and activation functions. This
will lead to different codes in the hidden layer and has a huge impact on the
network’s performance.

Most of the methods used for optimizing ELMs - like the ones mentioned
- focus on the size of the hidden layer. BIP complements those methods and
could - combined with other optimization methods - lead to even better learning
results for ELMs.
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