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Abstract

This paper investigates the learning dynamics of intrinsic plasticity (IP), which
is a learning rule to tune a neuron’s activation function such that its output dis-
tribution becomes approximately exponentially distributed. The information-
geometric properties of intrinsic plasticity are analyzed and the improved nat-
ural gradient intrinsic plasticity (NIP) dynamics are evaluated for a variety of
input distributions. Together with a further new modification of the IP rule, the
high capability of NIP to cope with drift is demonstrated to have superior per-
formance as compared to the standard gradient in experiments with synthetic
and real world data.

Keywords: neural network, learning, intrinsic plasticity, information
geometry, natural gradient, metric tensor, gradient descent, drift

1. Introduction

In 2004, Triesch introduced a biologically inspired model of intrinsic plastic-
ity (IP) [1] for optimization of an artificial neuron’s activation function based on
stochastic gradient descent. The target of IP-learning is to approximate an ex-
ponential output distribution irrespective of the given input distribution. This
maximizes the neuron’s information transmission, related to the high entropy
of the target distribution. Since its introduction, the IP-rule has been used to
learn sensory representations [2] and enhance the encoding in reservoir networks
[3, 4], which are of main interest in this paper. A batch-version has been shown
to improve extreme learning machines [5] and static reservoirs [6]. It was further
shown that in synergies with synaptic plasticity IP can detect heavy tail input
distributions [7]. Despite its success in these different domains, the IP learning
dynamics have not yet been analyzed in detail and potentially suffer all known
drawbacks of standard stochastic gradient. The parameter estimates can lead to
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small gradient norms in some regions of the parameter space, so called plateaus,
where convergence is slow.

One reason for this is that the parameterization and the corresponding out-
put of a model are defined in different metric spaces. Most gradients defined on
an error measure only utilize Euclidean metrics in parameter space. But, gen-
erally, there is no reason to assume that the Euclidean metric is the preferential
distance measure between solutions. It is well known that the parameter space
has a Riemannian metric structure in many cases, for instance in the weight
space in neural networks [8]. The parameter space can be analyzed by means of
information geometry - a theory which employs differential-geometric methods
in statistics [9, 10].

While the steepest direction in a parameter space with an Euclidean met-
ric structure is given by the conventional gradient, the steepest direction in a
parameter space with Riemannian metric structure is given by the so-called
natural gradient. It is obtained by transforming the Euclidean metric in the
output space by means of an often only locally defined metric tensor into the
parameter space. The tensor needs to be well-suited to the Riemannian metric
of the parameter space.

It has been shown that the natural gradient can be advantageous for different
stochastic learning setups like blind-source separation or statistical estimation
of probability density functions (see e.g. [8, 11, 12]). It has also been applied
to improve the learning dynamics of multilayer networks [8, 13]. For instance
in [14] the authors distinguish between a transient and an asymptotic phase in
the learning dynamics which both show significant gains in performance over
standard gradient descent. The concept of natural gradient has further been ex-
tended to more general classes of multidimensional regression and classification
problems in [15]. An alternative derivation of the natural gradient is given in
[16], together with the natural equivalent of batch learning, linked to Levenberg-
Marquardt optimization. Recently, the special case of learning for non-linear
discriminant networks was improved by use of natural gradient in [17].

As opposed to standard neural learning, where the input weights are adapted,
IP learning adapts parameters of the activation function. This paper defines and
analyzes the corresponding Riemannian metric tensor for IP in detail which was
first introduced in [18] and thereby introduces the natural gradient for IP. Like
in other domains, where natural gradients were previously explored, experi-
ments reveal that the Riemannian metric and the associated natural gradient
are more suited to describe distance relations between output distributions for
IP and provide superior learning dynamics.

First, IP learning is enhanced with the natural gradient and a further novel
mechanism to adaptively transfer persistent changes of the activation function
caused by IP to the weights. Furthermore, the paper shows that IP learning si-
multaneously provides unsupervised input drift compensation. Note that we do
not consider so called concept drift, which means online changes in the desired
output function [19], as opposed to compensation of online changes of the input
signal. The latter is highly useful in real world applications where measurements
are made long periods of time [20] or if inputs are systematically shifted and
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scaled through other processes like for instance a sudden change of illumination
or a sudden displacement of a camera. The literature shows that a detection
of the drift before the compensation is a promising approach [21, 22]. In these
cases a suitable compensation strategy needs to be chosen in order to cope with
the drift successfully. One such strategy is to adjust the data accordingly, e.g.
to recenter to compensate respective mean shifts or to rescale to compensate
changes in variance. This requires external data analysis and appropriate mea-
sures but does not adapt the learned model to internalize the drift. Thereby
the learned model does not actually encode for the current real world input, but
rather for the input at learning time before the drift occurs.

This is opposed to an implicit approach to drift compensation that inter-
nalizes the drift into the model by continuous re-adaptation. In principle, con-
tinuous online learning of the weights though backpropagation can provide re-
spective re-learning and that actually is a strong argument in favor of applying
online-learning while already exploiting the learned model. But it requires that
error feedback is continuously available to change the neural code that solved
the learning task for the original data. In real applications, this may not be
feasible. Consider for instance the application of a learned virtual sensor for
which training data can be generated in the laboratory using a costly direct
sensor. The goal is to replace this sensing in the real product, where supervised
re-adaptation of the weights is consequently not possible by definition.

Drift compensation through IP learning in the presence of mean and variance
changes offers a different and novel approach, which internalizes the drift in
the network model so that the input data does not need to be analyzed. It
simultaneously sustains the neural encoding, which was learned using the error
feedback for the original data, so that there is also no need for continuous error
feedback and retraining. To the best of our knowledge, there is currently no
other approach with these two features. IP achieves this by exploiting that the
considered networks restrict error driven weight adaptation to the outputs of
the network, whereas optimization of the input encoding in the hidden layer is
decoupled from the output weight adaptation and provided by the IP learning.
The drift compensation is therefore in some sense a desired side effect of the
local and unsupervised optimization of the encoding of each single neuron in the
network. It turns out that only the combination of the proposed modification
of the IP rule and the usage of the natural gradient provides an IP learning
dynamics that it is well suited for compensating such drifts.

The paper is organized as follows: Sec. 2 and 3 review the IP learning
rule and describe how the natural gradient is defined for IP. Sec. 4 describes a
technique to tackle numerical issues of the IP learning rule. Experiments that
analyze the differential-geometric properties of IP are provided in Sec. 5 in order
to complement the theory of natural gradient. It is also shown how the learning
dynamics change when following the natural gradient. Sec. 6 demonstrates the
effects of natural gradient IP learning for compensating drifts in the input,
including a real world learning task from robotics. Finally, Sec. 7 concludes the
paper.
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2. Intrinsic Plasticity

Intrinsic Plasticity (IP) was developed by Triesch in 2004 [1] as a model of
homeostatic plasticity for analog neurons with parameterized Fermi functions
yθ(x) = (1 + exp (−ax− b))−1 as activation and parameters θ = (a, b)T . The
goal is to optimize the information transmission of a single neuron strictly locally
by adaptation of slope a and bias b such that the neuron’s output y becomes
approximately exponentially distributed with a fixed mean µ. This is done with
respect to the input sample distribution fx(x), where x is the synaptic sum
arriving at the neuron. Typically µ is chosen to be in the interval [0.1, 0.3].
IP-learning can be derived by using the insight from statistics fy(y) = fx(x) ·
(∂y/∂x)

−1
and the equation ∂y/∂x = ay(1 − y), obtained by analyzing the

Fermi function. Minimization of the difference L(fy, fexp) = L(θ) between the
output fy and an exponential distribution fexp, quantized by the Kullback-
Leibler-divergence [23] (KLD) delivers the following:

L(θ) = E[l(y, θ)] =

∫
Ω

fy(y) ln

(
fy(y)

fexp(y)

)
dy (1)

=

∫
Ω

fy(y) ln

(
fx(x)

( ∂y∂x ) 1
µe

− 1
µy

)
dy (2)

=

∫
Ω

fy(y) ln(µfx(x)) dy

︸ ︷︷ ︸
C

−
∫
Ω

fy(y) ln

(
∂y/∂x

e
1
µy

)
dy (3)

= C +

∫
Ω

− ln

(
ay(1− y)

e
1
µy

)
︸ ︷︷ ︸

l(y,θ)

fy(y) dy , (4)

where C remains as a constant of the potential and can be neglected without
loss of information. Since IP was introduced in form of a stochastic gradient de-
cent rule, the respective online loss function can be identified with the integrand
l(y, θ) (see Eq. (4)). Here the KLD is interpreted as expected loss E[l(y, θ)] for
the input samples x distributed according to fx(x). A separation of Eq. (4) into
the entropy Hx[y] and the expectation value of the output distribution Ex[y] is
possible [24], which directly shows that a minimization of L(θ) for a fixed mean
Ex[y] is equivalent to entropy maximization of the output distribution. Addi-
tional information about the KLD and its distance to exponential distributions
can be found in [25]. The typical approach is to use the stochastic gradient of
this potential in order to find a minimum of the expected loss function. The
following online update equations for slope and bias - scaled by the step width
ηIP - are obtained:

∆a =
ηIP

a
+ x∆b ∆b = ηIP

(
1−

(
2 +

1

µ

)
y +

1

µ
y2

)
. (5)
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Fig. 1 shows how four different input distributions (first row in the figure) are
transformed into exponential-like distributions (second row in the figure) after
training with IP. The figure clearly reveals that the best possible fit after IP
learning is highly dependent on the input distribution. This is due to the fact
that only two parameters in the Fermi function are adapted. These distributions
will be used as input for the experiments in the following sections.

Figure 1: Four input distributions fx(x) (1st row) and the learned exponential-like output
distributions fy(y) for µ = 0.2 (2nd row).

3. The Natural Gradient for Intrinsic Plasticity

Given an input distribution fx(x), an analog neuron establishes a differ-
entiable mapping between the parameter space Θ = R2 and the manifold of
possible output distributions Υ. The KLD comparing a given distribution to
the exponential distribution with fixed mean µ in Eq. (4) can be used to derive
a canonical distance measure on the output distribution space resulting in a
Riemannian metric F on the parameter space Θ. The metric determining the
distance between two output distributions y1(x) = y(x, θ1) and y2(x) = y(x, θ2)
in Υ defined by the parameter settings θ1 and θ2 = θ1 + dθ in Θ for an infinites-
imal change of parameters dθ is given by D (y1, y2). This distance measure is
transformed such that it induces the Riemannian metric tensor F (θ) - a 2 × 2
positive definite matrix given by the Fisher information [26] - as a pull-back

Neuron

=ℝ
2



Parameter Space
Output Space

d ⋅F⋅d  D  f 1 , f 2

Figure 2: Differentiable relation (Neuron) and metrics F and D between parameter space
Θ = R2 and manifold of possible output distributions Υ.
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onto the parameter space:

D (y1, y2) = Ex[(l(y1, θ1)− l(y2, θ2))
2
] (6)

= Ex[(l(y1, θ1)− l(y1, θ1)−∇l(y1, θ1)dθ)
2
] (7)

= Ex[(∇l(y1, θ1)dθ)
2
] (8)

= dθ · Ex[∇l(y1, θ1) · (∇l(y1, θ1))
T

] · dθ = dθ · F (θ) · dθ. (9)

This idea guarantees that the distance between two parameter vectors θ1 and
θ2 - as measured by the length of the geodesic with respect to the metric tensor
F (θ) in Eq. (9) - is equal to the previously defined distance measure D(y1, y2) in
Eq. (6) on the corresponding output distributions y1 and y2 in Υ. The relation
between parameters and output distributions established by a nonlinear transfer
function of a neuron and its’ corresponding distance measures is schematically
illustrated in Fig. 2.

As already mentioned before the parameter spaces spanned by neural net-
works have a Riemannian character [9, 26]. The steepest descent direction of a
potential with Riemannian structure is given by the natural gradient defined by
the metric tensor. The following update equation is obtained when using the
natural gradient for IP:

θt+1 = θt − η(F (θ) + εI)−1∇l(y, θ) = θt − η∇NIPl(y, θ) , (10)

where I is the 2 × 2 - identity matrix and ε ≥ 0 is a positive scalar. We
call ∇NIP := (F (θ) + εI)−1∇ the natural gradient operator for IP. Typically
ε can be set to zero to obtain a plain natural gradient formulation. But in
the more general definition Eq. (10), ε introduces a blending between standard
and natural gradient. Note that this blending influences the step width of the
numerically applied gradient descent and stabilizes the inversion of the metric
tensor F .

The main problem with this formulation is that the expected gradient with
respect to the input is needed, but not available in an online framework. How-
ever, it was shown in [13] that is possible to estimate the metric tensor online
by defining a proportional control law:

˙̂
F (θ) = λ

(
F (x, θ)− F̂ (θ)

)
, (11)

where F̂ is the estimate of the Fisher matrix and F (x, θ) the Fisher information
for one input element x. The problem then reduces to finding a good λ, which
must be small since the loss function is continuous and a good initial value F̂0(θ).
The NIP learning then becomes online capable and computationally feasible.

4. Working-Point Transformation for Intrinsic Plasticity

A closer inspection of Eq. (5) (left) reveals that the standard IP rule can
suffer from numerical instabilities in particular for large input amplitudes which
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lead to small slopes a. In this regime of small slopes the discretization becomes
problematic due to the singularity induced by the 1

a -term, illustrated in Fig. 5
(A). In combination with the results of experiments in Sec. 6.1 this reveals
that IP has a “working point” at a = 1. It is therefore favorable to keep the
parameter a close to this “working point”, which can be achieved by a novel
modification of IP learning. It proposes to scale the neuron’s input weights with
the slope in order to transform the working point appropriately:

∆~w = ηws · (−~w + a · ~w) (12)

with ηws < ηip (ηws is set to 10−5 in the experiments). With this additional
adaptation rule, the slope tends to converge back to unity, as the weights con-
verge to the former slope values. Hence the semantics of the IP learning rule
remain the same while transferring the learned pertinent slope information from
the slope parameter a to the synaptic weights.

The collection of learning rules given by Eq. 10, Eq. 11 and Eq. 12 will be
used in the following experiments and called Natural IP (NIP).

5. The Impact of the Natural Gradient on IP

This section presents experimental results for a single-neuron model with
parameterized Fermi function where the proposed learning rules are used. The
experiments are performed with different inputs: The first row in Fig. 1 shows
the four different input distributions that are used for investigation. A Gaussian
(1-G), a bipartite (2-G), a tripartite (3-G) Gaussian and a uniform (U) distri-
bution. Ntr = 100 samples are independently drawn from each distribution and
used for training. A step width of η = 10−3 and a numerical stabilization of
ε = 10−1 is used. For online estimation of the metric tensor a decay rate of
λ = 0.01 is used.

5.1. Information Geometry

The following experiment visualizes how the geometry of the potential L
changes by use of the metric tensor F at the attractor θ∗. The 1-G distribution
is used as input to a single Fermi neuron model for illustration.

Fig. 3 (left) shows schematically the Euclidean and the Fisher metric at a
given parameter configuration θ = (2,−0.5)T . Note that the gradient induced
by the Fisher metric is not orthogonal to the equipotential lines anymore. The
direction of the steepest descent therefore changes and points in a more direct
way to the attractor than the standard gradient for IP which is using the plain
Euclidean metric visualized as black circle in the figure. Fig. 3 (center) shows
the potential L(θ) with a clearly visible plateau in b-direction, where the change
in the KLD is small. The dashed line is the unit circle with a radius of η in
the geometry defined by the metric tensor F (θ∗), which is well suited to the
potential: The unit circle is stretched in b-direction. Fig. 3 (right) visualizes
the distortion of the potential after transformation with F (θ∗). The induced
landscape becomes “Euclidean-like” after transformation and loses the plateau
- the transformed potential is isotropic.
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5.2. Information Geodesy

The following experiments focus on a more global analysis of the natural
gradient descent. A gradient descent from a given starting point θ to the at-
tractor θ∗ is performed while the relative geodesic length (RGL) of the path is
recorded. The RGL gives the length of the geodesic γ from starting point θ to
the attractor θ∗ with respect to the shortest way in the parameter space:

RGL(θ) =

∫
γ

ds / ‖θ − θ∗‖ , (13)

where ds =
√

da2 + db2 is the infinitesimal arc length in parameter space.
Fig. 4 (left) shows the potential field L(θ) of the Gaussian input distribution

(1-G) while the right hand side of the figure shows the potential field L(θ) of
the Uniform input distribution (U). It also shows four starting points θ1−4 for

Task E[RGL] (IP) E[RGL] (NIP)

1-G 1.3493 ± 0.5730 1.0748 ± 0.0526
2-G 1.0473 ± 0.0300 1.0234 ± 0.0342
3-G 1.1209 ± 0.0753 1.0505 ± 0.0506
U 1.0219 ± 0.0206 1.0056 ± 0.0099

Table 1: Relative average length of the geodesics E[RGL]

and their standard derivation
√

E[(RGL − E[RGL])2] for
IP and NIP learning.

the learning of each input
distribution. The black lines
show gradient descents per-
formed by IP, while the yel-
low lines are the geodesics
from the NIP learning. Both
approaches have the same
fixed-point, but the geodesics
of the NIP learning imply a
more direct path to the at-
tractor in parameter space. Thus the natural gradient method is better suited
to the Potential than the conventional IP gradient. Tab. 1 displays the results
of an experiment where the RGL is measured for N = 100 different starting
points drawn from a Gaussian distribution centered around the attractor with
covariance matrix Σ = I. It shows the average RGL and its standard deviation.
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Since the minimum value for the RGL is one (which corresponds to a straight
line from the initial point to the attractor in parameter space), the values for
the RGL in Tab. 1 show that the geodesic lines of NIP are almost straight
for all tested input distributions (visualized in Fig. 4). In addition, the low
standard deviation demonstrates that the curvature of the geodesic is more
independent from the initial point in the potential, compared with using the
Euclidean metric.

6. Drift Compensation with IP

Drift compensation is a practically highly relevant issue for the application
of machine learning algorithms, because in real plants sensors and actuators
are typically subject to wear and other non-stationary effects e.g. induced by
temperature changes. As discussed in the introduction, drift can be externally
compensated by re-adjusting the data which requires an additional mechanism,
or internalized into the learned model for continuous adaptation. IP provides
a novel approach to the latter, because it internalizes the drift in an unsuper-
vised and local way, while not relying on continuous error feedback learning. It
optimizes the neural encoding by shifting the mean through the bias and scal-
ing the variance through the slope parameter in the activation function. Drift
compensation can thus be considered an inherent side effect of the IP learning
approach, which has not been analyzed in the IP literature yet. Obviously, the
learning dynamics of IP changes the effectiveness of drift compensation and the
following sections will show that the interplay of input drift and the standard IP
learning dynamics leads to typical plateaus, which can be avoided when using
NIP.
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6.1. Analysis of IP learning in the presence of input drifts

The following experiment with a synthetic input signal provides an initial
analysis of IP learning with and without the natural gradient in the presence
of drifts. It demonstrates that standard IP always implies some drift compen-
sation, but is not perfect on the other hand and can be improved trough the
proposed modifications. Experiments are performed using an input signal com-
prising a product of oscillations x(t) = sin(0.2t) · sin(0.053t) · sin(0.092t). In the
beginning, IP learning is applied for 5×104 steps in order to let the parameters
converge with a learning rate of ηip = 10−3. After learning, two manipulations
of the input signal are carried out to analyze the impact of the natural gradient
and weight scaling on the IP learning dynamics in the presence of drifts: (i)
gradual scaling of the signal changing the variance and (ii) a gradual shift of
the signal changing the mean. In the first experiment, a gradual linear scaling
of the input signal up to a factor of 100 or 1/100 respectively starting from 1 in
106 steps is applied. In the second experiment, a gradual linear shifting to 50
or -50 respectively starting from 0 in 5 × 105 steps is applied. Whereas these
scaling and shifts are taken to the extremes, they are meant to show the full
behavior of the learning algorithm and to allow to clearly display and discuss
the effects of the NIP and weight scaling modifications to the original IP rule.

The plots in Fig. 5 show the IP (black) and NIP (yellow) learning dynamics
for the described scalings and shifts. The blue-dashed lines show the computed
ground truth target slope and bias, which are necessary to perfectly compensate
the input signal manipulation. The left column summarizes the results for the
scaling while the right column outlines the effects for the shifting of the input
signal. The first row in Fig. 5 (A, B) displays the logarithm of the slope ratio
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for IP (black) and NIP (yellow), which is defined as follows:

“Slope Ratio” (IP) :
a(t)

atrain
“Slope Ratio” (NIP) :

a(t) · s(t)
atrain · strain

where a(t) is the recorded slope at time t and atrain is the learned slope for
the non-scaled and non-shifted input. The term s(t) simply denotes the scaling
factor of the weights at time step t with respect to the weight with unity norm,
in order to make the results comparable. The second row (C, D) shows the
shifting of the bias b(t) with respect to the bias btrain for the non-manipulated
input signal divided by the actual slope a(t). Hence, the plots show the effective
mean shift by IP (black) and the adapted NIP (yellow) learning rule.

“Bias Shift” (IP):
b(t)− btrain

a(t)
“Bias Shift” (NIP) :

b(t)− btrain

a(t) · s(t)

The KLD is computed to measure the success of the respective adaptation by
IP or NIP (see E and F).

Variance shift reveals working point. Fig. 5 (A) shows that the IP learning
rule is not able to counteract the signal manipulation for an increasingly small
scaling within the given time constraints. While compensation is good for small
variations, IP learning degenerates when the scaling decreases further. In the
case of a linearly increasing scaling, the slopes get very small until numerical
instabilities occur due to discretization. The plot also shows that the adapted
learning rule from Eq. (12) suffices to achieve the target slope ratio and resolve
the numerical instabilities.

Basically, the shift of the working point by the ∆w learning rule is responsible
for the good matching of the target - see the NIP line (yellow) in Fig. 5 (A).
Fig. 5 (C) shows that IP as well as NIP react suitably and hardly adapt the bias
when scaling the input signal. The oscillations of the “Bias Shift” in the plot
are mainly induced by the division with the slope - small variations in the bias
get magnified for very small slopes. This oscillation is an effect of discretization,
although not really a problem because the actual bias changes itself are very
small. The KLD for the IP and NIP cases are shown in Fig. 5 (E) and confirm
the increased performance - the KLD is small for the new learning rule.

Mean shift leads to plateaus. Fig. 5 (B) illustrates the occurrence of a systematic
overestimation of the input variance by IP when the signal is shifted. The reason
for the overestimation is that decreasing the slope leads to an increased effect
of the bias shift. In fact, IP drives the neuron into a parameter regime where
the gradient nearly vanishes which leads to very slow convergence, e.g. a typical
plateau that prevents efficient learning. This suboptimal behavior is rectified
by using NIP which gives a much better estimation of the gradient direction
in parameter space. Therefore the slope ratio with NIP hardly changes during
a pure shift of the input signal, although a small underestimation can still be
seen. Fig. 5 (D) shows that IP as well as NIP achieve a good compensation
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for the shift by use of the bias. However, the KLD for NIP stays close to the
optimal value for shifting of the input signal - in contrast to the results for IP
adaptation (see Fig. 5 (F)).

6.2. A real world example: learning to point with the humanoid robot iCub

In this section, a real world task involving the humanoid robot iCub demon-
strates that drift compensation is possible by sustaining the neural encoding
with the proposed learning scheme. Such robots are typically designed to solve
service tasks in environments where a high flexibility is required. To cope with
various kinds of drifts in the input, e.g. with changing illumination or a dis-
placement of a sensor, is a prerequisite for such systems. We use a hand-eye
coordination task that is inspired by [27] and is discussed in depth in a fur-
ther contribution in this volume [28]. The humanoid robot iCub learns to point
towards an object based on the raw visual input from his head cameras. We
investigate, if NIP learning can cope with the input shift that is associated with
a small displacement of the head, a typical problem if there is wear in the me-
chanical mechanism. As before, we explore quite extreme and even exaggerated
displacements to challenge the NIP algorithm.

Figure 6: Kinesthetic teaching of the humanoid robot iCub. One tutor guides iCub’s left arm
and another holds a red cup to point at in his left hand.

The experimental setting is illustrated in Fig. 6. A human tutor physically
guides the iCub’s arm by means of kinesthetic teaching using a recently estab-
lished force control on the robot. The tutor can thereby actively move all joints
of the arm to place the end-effector at the desired position. To create training
data, a second person in an approximate distance of two meters to the robot
moves an object in the visual field of iCub while the human tutor is guiding its
arm to point at the object by means of a laser pointer attached to the robot’s
hand. The 2D-pixel coordinates of the object in both eye-cameras are extracted
by a tracking system and recorded together with the joint angles of the arm, for
further details see [28].
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Figure 7: Drift compensation by sustaining the neural encoding with NIP for the humanoid
robot iCub.

The task is to learn the mapping from the 2 × 2D pixel coordinates received
by both cameras (with a resolution of 640 × 480 pixels) onto the end effector
configuration of the robot’s left arm, i.e. the respective joint angle configuration.
N = 5 data sets are recorded where the tutor in front of iCub painted eight-like
figures. The data sets comprise 458 to 506 samples where Ntr = 300 where
used for training and the remaining samples were used for testing. For each
data set, a different head configuration for the pan and the tilt-angle of the
neck was chosen from θpan ∈ [−20, 20] and θtilt ∈ [−20, 20] divided equally in 5
steps. This represents a relatively strong displacement of the head, which leads
to a shift in the input data as visualized in Fig. 7 (left). The pointing task
remains invariant. Note that in this case it is infeasible to cope with the input
shift by continuous online supervised error learning, because no error feedback
is available when exploiting the learned model to realize the actual pointing on
the robot.

To test the proposed form of intrinsic plasticity an extreme learning machine
(ELM) [29], which is basically a feed-forward neural network with one hidden
layer, is applied in the experiments.

Such networks comprise three different layers: x ∈ RI denotes the input,
h ∈ RR the hidden, and y ∈ RO the output neurons. The input is connected
to the hidden layer through the input matrix W inp ∈ RR×I which remain fixed
after random initialization. The read-out is given by the matrix W out ∈ RO×R

subject to supervised learning, which will be done by ridge regression (RR). The
calculation for the ith output neuron for input xk is thus given by:

yi(x
k) =

∑
j

W out
ij f(aj

∑
n

W inp
jn xkn + bj) (14)

where aj , bj are slope and bias parameterizing the component-wise applied
Fermi function f(x) = 1

1+e−x , and j = 1 . . . R is the index of the hidden layer
neuron. IP adapts the slopes aj and biases bj of the hidden layer neurons in an
unsupervised fashion. The hidden layer of the networks used in the experiments
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consists of R = 100 neurons. The network’s weights and biases are initialized
randomly from a uniform distribution in the interval [−1, 1], while the slopes
are initially set to one. The regression parameter is α = 10−3 in the following
experiments. The interplay between IP and ELMs has been analyzed in rigor-
ous detail in [6]. An highly efficient batch version of IP suited for ELMs was
proposed in [5].

Fig. 7 (right) compares the ELM network’s performance with and without
NIP on the shifted data without re-adapting the output weights. The network
is pre-trained on the first data set by means of NIP for 1000 epochs and then
trained by RR as e.g. in [5]. Then the network is tested on the shifted data
sets 2-5, either directly or after additional 1000 NIP epochs on each new data
set to compensate the shift. All results are averaged over 10 network initial-
izations. The test error significantly increases for data sets 2 to 5, if no NIP
training is applied. This is expected, since the data varies with changing head
configuration and the network can not arbitrarily generalize. However, the NIP
training can compensate the shift and keep the error low, despite relatively large
displacements and without re-training the output weights.

7. Conclusion

This paper makes two interconnected contributions to intrinsic plasticity
learning. IP has previously been introduced as a biologically plausible and com-
putationally very effective means to optimize the encoding of inputs in neural
networks of various types.

First, the well known natural gradient is introduced and analyzed for intrin-
sic plasticity. The significant impact of the natural gradient for this learning
dynamics is shown and an additional modification of IP learning introduced,
which targets to further optimize IP by keeping the parameters close to a suit-
able working point. These modifications improve IP learning over the previous
learning scheme and can be applied to any of the known applications of IP
learning.

Second, the implicit capability of IP learning to cope with drifts in the input
is analyzed for the first time and identified as a very special mechanism and
novel approach to drift compensation. It internalizes the effects of drift into the
learned model by adaptation of the activation function parameters without the
need to change the input data. This adaptation is achieved without the usage
of online error feedback. This is a novel and highly useful approach and can be
applied when using ELM feed forward type networks. However, it turns out that
the drift compensation effect works well only in connection with the proposed
modifications and improvements of the IP learning dynamics. Further work
shall be directed towards a closer comparison of possible drift compensation
schemes and towards the identification of problem domains where this scheme
works well. In particular the interplay of IP learning speed and drift speed
deserves attention in order to reliably compensate input changes. Nevertheless,
the current contribution provides a first account on drift compensation with IP
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learning and yields encouraging results on synthetic and first real world data
obtained through improved natural gradient learning.
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