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Abstract—In power electronics, ultrasonic wire bonding is
used to connect the electrical terminals of power modules.
To implement a self-optimization technique for ultrasonic wire
bonding machines, a model of the process is essential. This
model needs to include the so called ultrasonic softening effect.
It is a key effect within the wire bonding process primarily
enabling the robust interconnection between the wire and a
substrate. However, the physical modeling of the ultrasonic
softening effect is notoriously difficult because of its highly
non-linear character and the absence of a proper measurement
method. In a first step, this paper validates the importance of
modeling the ultrasonic softening by showing its impact on the
wire deformation characteristic experimentally. In a second step,
the paper presents a data-driven model of the ultrasonic softening
effect which is constructed from data using machine learning
techniques. A typical caveat of data-driven modeling is the need
for training data that cover the considered domain of process
parameters in order to achieve accurate generalization of the
trained model to new process configurations. In practice, however,
the space of process parameters can only be sampled sparsely.
In this paper, a novel technique is applied which enables the
integration of prior knowledge about the process into the data-
driven modeling process. It turns out that this approach results in
accurate generalization of the data-driven model to novel process
parameters from sparse data.

I. INTRODUCTION

Ultrasonic wire bonding is an established technology used
since decades to connect the electrodes of electrical devices.
Because of its flexibility, reliability and cost-efficiency it is
widely used for connecting the individual electrodes of micro-
electronic chips as well as high power semiconductor modules
like insulated-gate bipolar transistors (IGBT). Aluminum wire
is preferably used in heavy wire applications because of its
robust bonding behavior and low cost.

In the recent years, the growing market of powerful and
efficient power modules requires a material with better me-
chanical and electrical properties. Therefore, copper wire as
bonding material is highly desired. The superior material prop-
erties of copper compared to aluminium include significantly
higher electrical and thermal conductivity, mechanical stability
as well as higher interconnection reliability of copper bonds.
Therefore smaller chips can be operated at higher temperature

but with identical switching power leading to reduced costs
and higher yield. For these reasons, a technology change
from aluminium to copper is indispensable. Typical application
fields of products equipped with copper wire bonds are, for
instance, the strongly growing markets of renewable energy
and electric vehicles [1].

Copper wire bonding is currently in the state of being
established as an alternative interconnection method, mainly in
thin wire applications, but recently also in heavy wire bonding
of power electronics. Because of the different material prop-
erties, the bonding parameters in copper wire bonding differ
significantly from those of aluminium wire bonding. Ultrasonic
power and the normal bonding forces are about 2 to 3 times
higher. The copper wire bonding process also reacts more
sensitive to parameter changes. This makes manufacturing of
reliable copper bond connections challenging.

In order to increase the reliability of the copper bonds, an
adaptation of the bonding parameters at runtime is desired. To
this end, self-optimization is employed in the wire bonding
machine. Self-optimization gives the machine the ability to
adapt its behavior based on the current situation by changing
the currently pursued objectives. To do so, optimal compro-
mises between several objectives need to be computed before
operation. Therefore, multi-objective optimization techniques
are employed [2]. For this purpose, a model of the entire
bonding process is required. Although many models of the
bonding process have been proposed (see [3], [4]), the
interaction of the process parameters is still largely unknown to
this day and a sufficiently accurate model is not available. The
effect of ultrasound on the wire material is one of those effects
that have not yet been modeled successfully. Previous studies
assume that the applied ultrasound softens the wire, thus this
effect was named ultrasonic softening. It has a significant
influence on the wire deformation and the bonding process.

In this paper, machine learning is applied to model the ul-
trasonic softening effect from data. This data-driven modeling
extracts regularities of the bonding process from exemplary
bonds produced with different process parameters. The trained
model can then generalize these regularities to novel process
parameters. A typical problem of machine learning techniques



is the generalization from only few training examples. Ac-
curate generalization of the data-driven model is achieved in
this paper by integrating prior knowledge about the bonding
process into the learning. Based on the technique introduced in
[5], expert knowledge about the bonding process is rephrased
in terms of linear inequalities which then serve as constraints
for the learning. This hybrid methodology combines the flex-
ibility of machine learning techniques with the reliability of
expert knowledge and physical constraints.

The paper is organized as follows: Section II introduces the
physical process and discusses related work. The data-driven
modeling technique is introduced in Sec. III. Its application
to the ultrasonic softening effect together with the data acqui-
sition are subject of Sec. IV. The paper closes with a brief
conclusion in Sec. V.

II. ULTRASONIC SOFTENING EFFECT IN
COPPER WIRE BONDING

Ultrasonic wire bonding is a cold friction welding process.
The wire is placed under the tip of a slim rod-like bonding
tool (see Fig. 1). It is pressed onto the electrode surface with
a well-selected normal force causing an initial cold straining
at the contact area. A so called ultrasonic transducer generates
mechanical vibrations in the ultrasonic range, e.g. 60kHz,
which are transferred by the bonding tool into the welding area.
The deformation of the wire and the adhesion between wire
and substrate steadily progress during this welding process.
Finally a pure inter-metallic compound between wire and
electrode is formed at temperatures well below the melting
point of the bonding partners. After the first bond the machine
forms the so called loop and then the second bond connection
is established. After cutting the wire, the tool is lifted and the
interconnection process is finished.

Fig. 1. Copper wires bonded onto a copper substrate.

To build a model of the bonding process it is essential
to consider all effects, which are, the static elasto-plastic
deformation, the ultrasonic softening effect, and the proceeding
adhesion between wire and substrate. This paper focusses on
the ultrasonic softening effect. This effect was first presented
in [6]. It describes the macroscopic softening of the mate-
rial under applied ultrasound. The yield strength seems to

be lowered so that the material can be deformed at lower
mechanical stresses and forces. The ultrasonic softening has
a significant influence on the bonding process, because it
enables the deformation and growth of the bonding area with
reasonable normal forces.

Deformation tests with the bonding machine are conducted
to observe the ultrasonic softening effect. The ultrasound is
turned on and off during each experiment to examine the
effect of the high frequency vibrations. In each experiment,
the normal force acting on the wire is increased linearly from
100cN up to 2800cN within 1200ms. The bonding machine
and in particular the bonding tool is not perfectly rigid, which
makes it necessary to measure its elastic deformation. To do
so, the bonding tool is placed on a hard substrate, onto which
it exerts the nominal force. The measured elastic deformation
of the bonding machine is then subtracted from the total
deformation in the regular bonding experiments. Ultrasonic
softening and hardening effects are clearly visible in the
observed wire deformations shown in Fig. 2. Line 1 depicted
in Fig. 2 is a typical force-strain curve for a radially deformed
wire without ultrasound. In this experiment, the static normal
force only induces a deformation of approximately 13%. In
experiments corresponding to line 2, 3 and 4, the ultrasound
is applied between 1400cN and 2100cN with an altering
amplitude from 10V to 30V. As can be seen in Fig. 2, the
wire softens considerably during application of ultrasound.
The amount of deformation increases with higher ultrasound
voltages. After shutdown of the ultrasound, the curves show
a hardening effect since the gradient of the force-deformation
curves are increased compared to line 1 in Fig. 2. As expected,
the total deformation after applying ultrasound increases with
the ultrasonic amplitude.
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Fig. 2. Deformation experiment showing the ultrasonic softening effect.

Ultrasonic softening is a highly non-linear effect acting on
microscopic scale within the metallic lattice. Siddiq et al. [7]
modeled this effect in great detail and with high complexity.
Within the scope of our research project, a model that can



be computed efficiently is required. The research area of
machine learning offers techniques that fit flexible models to
data and are efficient to compute at the same time. Therefore,
such a data-driven modeling approach is favored over a non-
linear analytical model in this paper. The aim of the model
is to estimate the deformation curves of the wire for different
ultrasonic amplitudes and normal force trajectories.

III. DATA-DRIVEN MODELING

This section presents a data-driven approach to model the
ultrasonic softening effect. First, the model inputs and outputs
are introduced. Then, the modeling technique is outlined
including the integration of prior knowledge about the bonding
process into the learning process.

A. The Copper Wire Bonding Model

A schematic view of the model is shown in Fig. 3. The
input of the model is the point in time t of the process, the
applied ultrasonic voltage US(t) and the normal force FN(t)
between bonding tool and substrate. The output of the model is
the wire deformation D(t) at time t. The ultrasonic voltage and
normal force are approximately constant during the bonding
experiments considered in this paper. Therefore, the model can
be understood as a function of time parameterized by the bond-
ing parameters, i.e. ultrasonic voltage and normal force. This
leads to a two-dimensional encoding of the bonding process.
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Fig. 3. Schematic model of the ultrasonic softening effect.

The model needs to quantify the impact of different process
parameter configurations which are not contained in the data
set for learning. Besides this generalization of the training
data to novel process configurations, an efficient evaluation
of the model for new inputs is an additional requirement.
Training can be accomplished offline and is decoupled from the
evaluation phase. The following sections introduce a machine
learning technique which meets these requirements.

B. Data-Driven Modeling with Extreme Learning Machines

To model the ultrasonic softening effect in a data-driven
manner, a so called extreme learning machine (ELM, [8]) is
applied. The ELM is a feed-forward neural network (see Fig. 4)
and comprises three layers of neurons: x = (t|US|FN) ∈ RI=3

denotes the input, h∈RR the hidden, and D∈RO=1 the output
neurons. The input is connected to the hidden layer through
the input matrix W inp ∈RR×I . The read-out matrix is given by
W out ∈ RO×R. For input x, the output is computed by

D(x) =
R

∑
j=1

W out
j f (

I

∑
k=1

W inp
jk xk +b j) , (1)

where b j is the bias for neuron j, and f (x) = (1+ e−x)−1 the
logistic activation function.

The components of the input matrix W inp and the bi-
ases b j are drawn from a random distribution and remain
fixed after initialization. Learning is restricted to the read-
out matrix W out. This setup renders learning very efficient
because backpropagation of errors like in classical feed-
forward networks is not necessary. Although most of the
model parameters are randomly initialized and are not trained,
it was shown in [9] that the ELM possesses the universal
function approximation ability under fairly mild conditions.
ELMs feature high efficiency, conceptual simplicity and good
generalization capabilities [10].

x D
h(x)

W
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W
out

Fig. 4. Extreme Learning Machines (ELMs) are feed-forward neural networks
with input, hidden and output layer. Each neuron in the hidden layer computes
a weighted sum of the inputs with an additional non-linear activation function.
The connection weights from the input to the hidden layer are initialized
randomly and remain untrained. Learning is restricted to the read-out weights.

Let D = (X ,T ) = (xk,Dk) with k = 1 . . .Ntr be the data set
for training, where Ntr is the number of training samples, X is
the collection of input configurations, and T is the matrix of
target wire deformations. Supervised learning of the read-out
weights W out ∈RO×R is accomplished by minimization of the
quadratic error functional

W out = argmin
W

(‖W ·H(X)−T‖2 + ε‖W‖2) (2)

which assumes a Gaussian prior for the learning parameters.
The Gaussian prior punishes the growth of the network’s read-
out weights and is flexibly controlled by the regularization pa-
rameter ε > 0. In Eq. 2, H(X)∈RR×Ntr is the matrix collecting
the hidden layer states obtained for inputs X ∈ RI×Ntr , and
T ∈ RO×Ntr is the matrix collecting the corresponding target
values. The solution to Eq. 2 is given by ridge or Tikhonov
regression [11] in a computationally cheap fashion:

W out = T ·H(X)T ·
(
H(X) ·H(X)T + εI

)−1
, (3)

where I ∈ RR×R is the identity matrix. Inputs and outputs are
normalized to the range [-1, 1] according to the distribution of
the training data. This yields to good learning results without
further tuning of parameters.

C. Learning with Prior Knowledge

Learning a well applicable model of the ultrasonic soften-
ing effect from few training samples is particularly challenging
because only sparse information about the underlying mapping
are given. It might be possible that larger parts of the parameter
space controlling the bonding process remain uncovered with



data. Therefore, there is considerable need for generalization
towards regions subject to sparse sampling. Fortunately, prior
knowledge about physical properties of the bonding process is
available:

(1) The wire deformation is monotonically increasing
in time.

(2) The wire deformation is monotonically increasing
w.r.t. the ultrasonic voltage because higher voltages
lead to a stronger wire deformation.

(3) The wire deformation is monotonically increasing
w.r.t. the normal force of the tool. The normal force
puts pressure on the wire and thus leads to a stronger
wire deformation.

It is possible to rephrase this knowledge in mathematical terms
using the model input variable u= (t|US|FN)∈R3 to formulate
point-wise constraints:

(1) ∂1D(u) =
∂

∂ t
D(u)> 0 : ∀t ∈Ω ,

(2) ∂2D(u) =
∂

∂US
D(u)> 0 : ∀US ∈Ω ,

(3) ∂3D(u) =
∂

∂FN
D(u)> 0 : ∀FN ∈Ω ,

(4)

where Ω is a predefined region in the model’s input space.

These constraints are integrated into the learning by taking
the partial derivatives of the model’s output in a point u ∈Ω:

∂ MD(u)
∂um1 . . .umM

= ∑
j

W out
j

∂ Mh j(u)
∂um1 . . .umM

= ∑
j

W out
j f (M)(a j ∑

k
W inp

jk uk +b j) ·aM
j W inp

jm1
. . .W inp

jmM
,

(5)

where mi = 1,2,3 denotes the derivatives according to the
conditions (1),(2),(3). Note that these inequalities are linear
in the output parameters W out irrespective of the form of the
constraints for a given point u ∈ Ω. This actually defines a
quadratic program as first introduced for ELMs in [5].

The read-out weights are then trained by solving this
quadratic program optimizing W out subject to a set of col-
lected point constraints Ui = {u1

i , . . . ,u
Nu
i } : u ∈Ω in order to

implement the conditions (1), (2), and (3):

W out =argmin
W

(‖W ·H(X)−T‖2 + ε‖W‖2)

subject to: ∂iD(Ui)> 0 : i = 1, . . . ,3 ,
(6)

where the matrices H(X) and T again collect the hidden states
and targets for inputs X , respectively, and ε is a regularization
parameter. Note that the constraints Ui and the input samples
X of the training data are not the same. Solving the quadratic
program guarantees satisfaction of the given constraints with
respect to the discrete inputs u, which is already useful in many
applications. It was shown in [5] that a well-chosen sampling
of points Ui is sufficient for generalization of the point-wise
constraints to a continuous region Ω. The following section
introduces a sampling strategy to construct such sets Ui.

D. Sampling Strategy

This section describes a strategy to sample constraints at
points u for the learning by Eqs. 6 which is typically sufficient
to generalize the local, discrete set of constraints Ui to a
continuous region Ω. The data set D for training and the
region Ω where the continuous constraints are supposed to
be implemented are assumed to be given a priori.

In a first step (k = 0), the network is initialized ran-
domly and trained without any constraints (i.e. the sample
matrix Uk

i = U0
i = /0 is empty). In this case learning can

be accomplished by ridge regression – the standard learning
scheme for ELMs, see Eq. 3. In the next step, NC samples
Û = {û1, û2, . . . , ûNC} are randomly drawn from a uniform
distribution in Ω. Afterwards, the number of samples νi that
fulfill (1), (2), or (3) are determined according to Eqs. 4.
The sampling algorithm stops if more then p percent of
these samples fulfill the conditions (1)–(3), i.e. νi/NC > p.
Otherwise, the most violating sample û for each condition is
added to the sample pool: Uk+1

i =Uk
i ∪ û. The obtained set of

samples is then used for training according to Eq. 6. A pseudo
code of the learning procedure is provided in Alg. 1.

Algorithm 1 Sampling Algorithm
Require: data set D , region Ω, counter k = 0, three empty

sample pools Uk
i = /0

Require: D : RI → R trained with D by ridge regression
repeat

draw samples Û = {û1, û2, . . . , ûNC}
νi = no. of samples in Û fulfilling (1)–(3)
if p > νi

NC
then Uk+1

i =Uk
i ∪ argmaxu∈Û ∂iD(u)

train ELM with D and Uk+1
i as in Eq. (6)

until p > νi
NC
∀i = 1, . . . ,3

IV. EXPERIMENTAL RESULTS

The data-driven modeling technique introduced in Sec. III
is applied to data acquired from a bonding machine during
production of bond connections with copper wire. The gener-
alization ability of ELMs is analyzed systematically.

A. Experimental Setup

A Hesse Mechatronics Bondjet BJ939 bonding machine
equipped with a standard wire bondhead is used for data ac-
quisition. This bondhead is designed for bonding with copper
wires in the range of 100 µm to 500 µm diameter. Tab. I lists
the specifications of the bondhead, wire and substrate which
are used for all experiments in this paper. In order to obtain

Specification Value
Bondhead type RBK01 Back-cut

Transducer Type 60kHz
Digital Generator Power Output 100W

Wire Size 500 µm (Cu)
Substrate DCB-thickness: 0.38mm ceramic, 0.3mm Cu

TABLE I. SPECIFICATION OF THE BONDHEAD, WIRE AND SUBSTRATE

training data for the data-driven modeling, a grid covering
the region of variability of the bonding parameters (voltage
US (t) and normal force FN (t)) is created. The minimum



and maximum ultrasonic voltage as well as the minimum
and maximum normal forces are limited by the process. The
ultrasonic voltage US(t) is varied from 44V to 52V and the
normal force FN (t) is varied from 3000cN to 3800cN both in
5 equally distant steps. For each grid point, ten individual bond
connections are produced. The applied ultrasonic voltage US(t)
and normal force FN (t) are approximately constant throughout
bonding. The resulting wire deformation trajectories D(t)
for each process configuration are recorded, downsampled
and averaged. The measured wire deformation is the height
reduction during the time interval between touchdown of the
tool on the wire and the end of the ultrasonic vibrations.

The experiments are conducted in random order to avoid
deviations due to environmental influences. To be able to
differentiate between the first and second bond of each in-
terconnection, the type of bond was logged as well. For both
of these types, individual models are trained.

B. Learning Setup

ELMs with and without the application of constraints de-
rived from the prior knowledge about the bonding process are
trained on the recorded data. To access the generalization abil-
ity of the data-driven models, a leave-one-out cross-validation
is conducted. That is, training is repeated such that each of
the 25 sampled process configurations is once left out from the
training set and serves as test scenario. Additionally, the impact
of the ELM parameters on the generalization performance is
evaluated by changing the hidden layer size R ∈ [30,50,100]
and the regularization parameter ε ∈ [10−4,10−6,10−8]. The
model performance is evaluated on the training and test set
by computing the error between estimated and recorded wire
deformation averaged over all time steps. Results are averaged
over 10 independent ELM initializations.

C. Results

The cross-validation results for ELM networks equipped
with and without prior knowledge are shown in Fig. 5. The
best performing network among the networks without prior
knowledge has a hidden layer with R = 50 neurons and a
regularization parameter of ε = 10−6. ELMs with R = 100
hidden neurons and a regularization parameter of ε = 10−8

show a typical behavior when learning from few data: They
achieve a low training error around Etr = 0.002 but have high
corresponding test errors of about Ete = 0.016. This big gap
between training and test errors indicates strong over-fitting.
Applying the learning with constraints, the same networks have
a slightly increased training error around Etr = 0.003, but the
test error is significantly decreased towards Ete = 0.0045. Note
that the generalization capability is increased by application
of prior knowledge irrespective of the network parameters in
this scenario. This demonstrates that the application of suitable
constraints alleviates the problem of over-fitting when training
data is sparse and that the integration of prior knowledge into
the learning facilitates reliable and robust generalization.

Fig. 6 shows the results of the data-driven modeling with
and without constraints in more detail. Each cell of the panel
corresponds to the process parameters of the bonding machine
indicated by the surrounding axes. In each cell, the recorded
wire deformation over time for these bonding parameters
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Fig. 5. Cross-validation errors for training and test sets of ELMs without
(ELM) and with (CELM) constraints.

is shown by a solid line with standard deviation computed
from the ten repeated bonding experiments (gray areas). The
generalization performance of models trained with and without
prior knowledge are plotted by solid bold and dashed lines,
respectively. Due to the high degree of non-linearity, a complex
model is required in order to capture the structure of the
data. However, a high model complexity, i.e. ELMs with large
hidden layers and small regularization constants, are prone to
over-fitting and poor generalization when trained on sparse
data. In particular, the parameter configurations at the corner
and the edge of the matrix are difficult to generalize (see the
corners of Fig. 6). This is reasonable since the models need to
extrapolate the training examples to these process configura-
tions. Thus, the data-driven modeling without prior knowledge
needs a careful fine-tuning of its regularization parameter or
network size. On the contrary, Fig. 6 demonstrates that the
integration of prior knowledge about the underlying process
into the learning by means of linear inequality constraints
mitigates the issue of sparse data and results in a significantly
increased generalization performance.

V. CONCLUSION

The ultimate goal of this research is the reliable production
of copper wire bond connections under varying conditions. For
the in-process adaptation of the bonding parameters, a model-
based optimization together with self-optimizing techniques
will be applied to achieve this goal in future work. For this
purpose, a validated physical model of the process, which
can be computed efficiently, is mandatory. Although ultrasonic
wire bonding is widely used and the ultrasonic softening effect
has been investigated in previous studies, there is still no model
of the bonding process or the ultrasonic softening available
which fulfills these requirements. This paper proposes a data-
driven model of the ultrasonic softening for copper wires for
the first time which is accurate and efficient to compute. The
issue of poor generalization from sparse data is addressed in
this paper by integrating prior knowledge about the ultrasonic
softening effect into the learning which then yields to accurate
generalization and reduced over-fitting. Supplementing data-
driven modeling techniques with prior knowledge about the
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(CELM). The constrained learning result in a good generalization performance within the standard deviation of the recorded wire deformations.

underlying process results in highly reliable models and is a
promising methodology for a broader range of applications.
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