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Abstract

Extreme learning machines are randomly initialized single-hidden layer feed-
forward neural networks where the training is restricted to the output weights in
order to achieve fast learning with good performance. This contribution shows
how batch intrinsic plasticity, a novel and efficient scheme for input specific
tuning of non-linear transfer functions, and ridge regression can be combined
to optimize extreme learning machines without searching for a suitable hidden
layer size. We show that our scheme achieves excellent performance on a number
of standard regression tasks and regression applications from robotics.
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1. Introduction

Huang et al. introduce to use the extreme learning machine (ELM) [1] which
is a learning scheme based on random projections. It is appealing because of
the high efficiency, conceptual simplicity and the good learning results (a survey
on ELM techniques can be found in [2]). As opposed to random projections for
dimensionality reduction, which have been considered in [3, 4], it is characteristic
for the ELM to use high-dimensional projections, which often actually increase
the feature dimensionality. The differences of the models are mentioned in
[5]. The relation between the ELM approach and earlier proposed feedforward
random projection methods is further discussed in [6, 7].

Despite the apparent simplicity of the ELM approach, its task performance
strongly depends on the random initialization and the size of the hidden layer. A
good performance is usually achieved by manually tuning the ELM parameters
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to a task-suitable regime which can lead to good generalization results (e.g. see
[8, 9]) but in a clearly heuristic way.

Since the ELM is based on the empirical risk minimization principle [10], it
leads to overfitting of the data, in particular if the task does not comprise many
training samples. To match this challenge, variations to the ELM have recently
been developed that are based on the idea to change the hidden layer size or to
regularize the output weights in order to improve the generalization ability.

Different ways to determine a suitable hidden layer size were already in-
troduced and benchmarked: Huang shows in [11] that the universal function
approximation ability of the ELM is preserved when incrementally updating
the size of the hidden layer, in a model named incremental extreme learning
machine (I-ELM). Related ideas to improve ELMs are the optimally pruned
extreme learning machine (OP-ELM) [12] reducing the hidden layer size and
the error minimized extreme learning machine (EM-ELM) [13] which aims at
increasing the hidden layer size, optionally in groups of neurons.

Methods based on the introduction of an additional weight decay term in the
error function are the regularized extreme learning machine (RELM) [14] and
the recently developed Tikhonov regularized optimally pruned extreme learning
machine (TROP-ELM) [15], while the TROP-ELM approach combines the idea
of regularization with the OP-ELM. Both use Tikhonov regularization [16] to
control the norm of the output weights, a technique that is also called ridge re-
gression (RR). The method is well known and established also in other domains
of neural network research [17] and machine learning in general [18].

However, the random initialization (RND) - i.e. the input weights and the
biases of the non-linear transfer functions - have a great influence on the task
performance as well. Methods only controlling the network size and the out-
put matrix are insufficient in tuning the neurons to a good regime, where the
encoding is optimal. Additional methods to improve the encoding by adapting
the neurons’ parameters therefore have a great potential for a better performing
ELM. The experiments in this contribution show that saturated and almost con-
stant hidden layer neurons lead to an encoding where the prediction capability
is poor. This motivates techniques to tune the output distributions of hidden
layer neurons in a regime where the encoding is suited for good generalization.

To achieve this goal, we are inspired by a biologically plausible mechanism
first introduced by Triesch [19] under the notion of intrinsic plasticity (IP). It
is shown in [20], that IP enhances the encoding in recurrent neural networks.
The output is forced by IP to approximate exponential distributions. This max-
imizes the network’s information transmission, caused by the high entropy of the
distribution. Inspired by IP, recently, a novel method called batch intrinsic plas-
ticity (BIP) [21] was introduced to optimize ELMs. BIP is used for pretraining
and adapts the activation function of the hidden layer neurons analytically by
a pseudo inverse technique such that desired output distributions are achieved.
This makes BIP highly efficient.

This contribution shows that ELMs pretrained by BIP have a significantly
better generalization ability than a randomly initialized ELM when trained with
RR without tuning the size of the hidden layer on different real world tasks. The
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approach is also compared with respect to performance and computational time
with other state of the art optimization techniques for ELMs.

2. The ELM, Regularization and Batch Intrinsic Plasticity

The ELM consists of three layers: u ∈ RI denotes the input, h ∈ RR the
hidden, and y ∈ RO the output neurons. The input is connected to the hid-
den layer through the input matrix Win ∈ RR×I , while the read-out matrix
Wout ∈ RO×R comprises the read-out weights. When denoting the weights from
the input layer to a specific hidden layer neuron i with Win

i ∈ R1×I , the ELM
scheme then becomes

y = Wouth = Wout
(
. . . , f

(
aiW

in
i u + bi

)
, . . .

)T
, (1)

where h denotes the actual state of the hidden layer, ai is the slope and bi the bias
of the i-th hidden layer neuron. Traditionally, the ELM is created by randomly
initializing the input matrix, the slopes ai and the biases bi (i = 1, . . . R) in the
- typically sigmoid - activation function. Usually the slopes are set to one.

2.1. Supervised Read-Out Learning for Extreme Learning Machines

Supervised learning for ELMs is restricted to the read-out weights Wout. In
order to infer a desired input-output mapping from a set of Ntr training samples
(u(k), t(k)) with k = 1 . . . Ntr and simultaneously punishing large weight values
in the read-out matrix, the read-out weights Wout are adapted such that the
sum of the mean square error and a regularization term for the training set is
minimized:

E =
1

Ntr

Ntr∑
k=1

||t(k)− y(k)||2 + ε||Wout||2 → min . (2)

To achieve this, the paper focuses on batch training and uses a standard ridge
regression method introduced for ELMs as regularized extreme learning ma-
chine (RELM) in [14]. The network’s states h(k) belonging to the inputs
u(k) as well as the desired output targets t(k) are collected in a state matrix
H = (h(1) . . .h(Ntr)) ∈ RR×Ntr and a target matrix Y = (y(1) . . .y(Ntr)) ∈
R

O×Ntr . The optimal read-out weights are then determined by the least squares
solution

Wout = YHT
(
HHT + ε1

)−1

, (3)

where the factor ε ≥ 0 was identified by Tikhonov in [16] as output regularization
strength. This least squares solution converges to the pseudo inverse for small
values of ε.
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2.2. Intrinsic Plasticity

BIP is inspired by a learning rule called intrinsic plasticity (IP) which was
developed by Triesch in 2004 [19] as a model for homeostatic plasticity for analog
neurons with parameterized Fermi-functions f(x) = (1 + exp(−ax− b))−1. The
goal is to optimize the information transmission of a single neuron strictly local
and online by adaptation of slope a and bias b of the Fermi-function such that
the neuron’s output h becomes exponentially distributed. IP-learning can be
derived by minimizing the difference D(fh, fexp) between the output fh and
an exponential distribution fexp, quantized by the Kullback-Leibler-divergence
(KLD) [22]:

D(fh, fexp) =

∫
Ω

fh(h) log

(
fh(h)

fexp(h)

)
= −H(h) +

1

µ
E(h) + log(µ) , (4)

where H(h) denotes the entropy and E(h) the expectation value of the output
distribution. In fact, minimization of D(Fh, Fexp) in Eq. (4) for a fixed E(h) is
equivalent to entropy maximization of the output distribution. For small mean
values, i.e. µ ≈ 0.2, the neuron is forced to respond strongly only for a few
input stimuli. The following online update equations for slope and bias - scaled
by the step-width ηIP - are obtained:

∆a =
ηIP

a
+ x∆b ∆b = ηIP

(
1−

(
2 +

1

µ

)
h+

1

µ
h2

)
. (5)

The only quantities used to update the neuron’s non-linear transfer function are
x, the synaptic sum arriving at the neuron, the firing rate h and its squared
activity h2.

2.3. Batch Intrinsic Plasticity

The task performance of an ELM strongly depends on the random initial-
ization of the input matrix and the biases. Without expert-tuning by means
of additional task knowledge, a random initialization can lead to the problem
of saturated or constant neurons. This can be avoided by finding activation
functions which are in a favorable regime. Since IP is an online rule it is too
computationally expensive for ELMs. Thus, we use BIP - a highly efficient
batch version of IP - to adapt the activation function such that certain output
distributions are achieved.

Only the inputs u = (u(1),u(2) . . .u(Ntr)) ∈ RI×Ntr are used for optimiza-
tion. The goal is to adapt slope ai and bias bi of the activation function such
that the desired distribution fdes for the neuron’s outputs hi(k) = f(aisi(k)+bi)
is realized.

To implement BIP, a linear regression problem is formulated, where random
virtual targets t = (t1, t2 . . . tNtr)

T are drawn in ascending order t1 < · · · < tNtr

from the desired output distribution fdes. Fig. 1 illustrates how BIP works: the
targets t and the input stimuli si are combined to build data pairs inducing a
regression problem. The synaptic sum arriving at neuron i when stimulated by
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Figure 1: Batch intrinsic plasticity formulated as a regression problem.

training sample k is given by si(k) = Win
i u(k) and collected in si = Win

i u. Since
the stimuli need to be mapped onto the right targets, a rearrangement of the
stimuli in ascending order si(1) < · · · < si(Ntr) is done by sorting si ← sort(si).
This is necessary because a monotonically increasing activation function f is
used to map all incoming training stimuli on the right targets and infer the
desired distribution fdes for the neuron’s output. Defining the data matrix
Φ(si) =

(
sTi , (1 . . . 1)T

)
and the parameter vector vi = (ai, bi)

T learning for the
i-th neuron is formulated as a linear and over-determined regression problem,
where the outputs are mapped onto the targets hi(k) ≈ tk:

‖Φ(si) · vi − f−1(t)‖ → min . (6)

The solution for the optimal slope ai and bias bi is obtained by computation of
the Moore-Penrose pseudo inverse [23]:

vi = (ai, bi)
T = Φ†(si) · f−1(t) . (7)

Typically Fermi and tanh functions are used as activation functions. The algo-
rithm is always terminating, since the pseudo inverse always exists. It is also
important that the virtual targets are in [0, 1] (if the Fermi function is used).
The learning is done in an one shot fashion and summarized in Alg. 1.

The pretraining is of the same order of complexity as the supervised read-out
learning, since only the least squares solutions of the linear model Φ have to be
calculated. Only the virtual targets ti used as meta-parameters are necessary
to fully define the regression model. Since the method is unsupervised, Alg. 1
has to be recomputed if new input samples are used, e.g. when changing the
task. The following sections 2.4 and 3 investigate on the behavior of BIP when
stimulated with different inputs.
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Algorithm 1: batch intrinsic plasticity (BIP) for ELMs
initialize ELM randomly
require get inputs u = (u(1),u(2) . . .u(Ntr))

T

for all hidden neurons i do

get stimuli si = Win
i · u

draw targets t = (t1, t2 . . . tNtr)
T from desired distribution fdes

sort targets t← sort(t) and stimuli si ← sort(si)
construct Φ(si) =

(
sTi , (1 . . . 1)T

)
calculate (pseudo-)inverse (ai, bi)

T = vi = Φ(si)
† · f−1(t)

end for
return v = (v1, v2 . . . vR)T

incoporate collected slopes and biases in v into ELM

2.4. Shaping Output Distributions via Batch Intrinsic Plasticity

To illustrate the behavior of the BIP-learning, a single-neuron model with
different fixed input distributions fs is considered. Ntr = 50 samples are used
for training and Nte = 1000 samples for testing - both drawn from fs.

Three different input and output distributions are taken into account: fdes =
fs = exp(onential), norm(al), and uni(form). The moments of the distributions
are: µ(exp) = 0.2, σ(exp) = 0.2, µ(norm) = 0.5, σ(norm) = 0.1, µ(uni) = 0.5,
and σ(uni) = 0.3. These values are used for the experiments collected in Tab. 1.
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Figure 2: A neuron’s activation function adapted by BIP to approximate the output distri-
butions fdes while starting from the input distributions fs. The input distribution is varied
over the rows, while the output distributions varies column-wise.

We demonstrate the ability of BIP by repeating results from [21] for the sake
of completeness of the current paper. Fig. 2 illustrates the result of adapting
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µ/σ exp norm uni

exp 0.18±0.02 0.49±0.01 0.46±0.04
0.21±0.03 0.08±0.01 0.25±0.02

norm 0.20±0.02 0.50±0.01 0.49±0.04
0.19±0.02 0.09±0.01 0.29±0.01

uni 0.19±0.02 0.49±0.01 0.49±0.03
0.18±0.02 0.09±0.01 0.31±0.01

Table 1: Fits of output distributions. A cell contains mean and standard deviation of µ and σ.

the neuron’s nonlinear transfer function. The input distribution is assigned to
the rows of the figure, while the desired output distribution is given column-
wise. The incoming training stimuli are visualized by the crosses on the x-
axis, while the corresponding targets are displayed on the y-axis. The x-axis
shows a histogram of the synthetically created test stimuli while the y-axis
shows a histogram of the outputs produced by the learned activation function
transforming the inputs. Especially when stimulated with Gaussian input, the
neuron is able to achieve the three desired output distributions very accurately -
illustrated by the second row in Fig. 2. It is demonstrated in the first column of
Fig. 2 that the exponential distribution is approximated for all inputs. However,
since the sigmoid activation function has only two degrees of freedom, the match
is typically not perfect. The figure shows that large deviations from the optimal
output distribution can sometimes be observed.

Further statistics are summarized in Tab. 1. The table shows the results
obtained for one neuron which is trained by BIP for 100 trials. After each trial,
the mean and the standard deviation of the output distribution are collected
which determines the deviation of samples from the desired distribution. The
table shows, that µ and σ of the output distribution are always approximated
very well with low variance.

3. The Importance of Output Distributions

The following section describes why shaping of output distributions of hid-
den layer neurons in ELMs is important and demonstrates its influence on the
networks’ performance.

We analyze the extrapolation and interpolation behavior of the trained ELMs
on two robotics tasks where we artificially tune the neurons to undesired regimes.
It is additionally investigated how strong the results of BIP depend on the
random initialization of the input matrix and the biases.

The hidden layers have R = 200 neurons, the parameterized Fermi-function
f(x) = 1/(1 + e−ax−b) is used as activation function and the desired output
used to produce the targets for the BIP learning is the exponential distribution
fdes = fexp with a fixed mean µ = 0.2. The networks for the robotics interpola-
tion task had a ridge regression parameter of εopt = 10−4 while the networks for
the extrapolation task had a ridge regression parameter of εopt = 10−5. These
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RR parameters where identified as parameters leading to the lowest test error
by line search in the range ε ∈ [10−9, 10−8, . . . , 103].

The task is to learn the observed inverse kinematics mapping between joint
and task space of a redundant six degrees of freedom (DOF) robot arm shown in
Fig. 3 and Fig. 4. Ntr = 100 (RoboInter) and Ntr = 200 (RoboExtra) training
samples and Ntr = 1000 (RoboInter) and Ntr = 2000 (RoboExtra) test samples
are generated by projecting a task trajectory specified in Cartesian end-effector
coordinates into the joint space of the robot arm by means of the analytically
calculated inverse kinematics function F : U→ Y, where U is the task and Y
the joint space. For each task space input (u1(k) . . . u6(k))T containing the
end-effector position and orientation the six-dim target vector (y1(k) . . . y6(k))T

is computed and additionally corrupted with Gaussian-noise (σN = 0.1). The
generated trajectory forms an eight for the robotics interpolation task - see
Fig. 3 - and four circles for the extrapolation task where only the second and
third circle were used for training and the first and the fourth cycle for testing
- see Fig. 4.
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Figure 3: The effect of saturated (left) and almost constant hidden layer neurons (right) on the
robotics interpolation task (RoboInter). BIP produces desired output distributions favorable
for generalization (center).

Fig. 3 and Fig. 4 show the results for ELMs which hidden layer neurons are
tuned into a specific regime in order to clearly extract the effect of BIP. Fig. 3 is
separated into two rows. The first row illustrates the robotics interpolation task.
The second row shows the output distributions of two hidden layer neurons for
the three different examples respectively. Fig. 3 (left) demonstrates a situation
where the neurons are saturated. This was achieved by drawing the input matrix
weights and biases uniformly from [−10, 10]. The first two images in the second
row show that the neurons in this case have an almost binary coding. The robot
arm is supposed to follow an eight-like trajectory which is not approximated
accurately. The generalization ability of the ELM is poor, strong overfitting
occurs. Fig. 3 (right) shows the effect of hidden layer neurons with almost
constant activation functions producing peak-like output distributions. The
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input weights and biases are drawn from [−0.1, 0.1]. Therefore, the complexity
of the network is to low and the mapping can not be approximated.
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Figure 4: BIP trained ELMs produce better mappings for the robotics extrapolation task
(RoboExtra).

Fig. 3 (center) illustrates the mapping results for an ELM which was trained
by BIP after the random initialization in a saturated or constant regime. The
hidden layer neurons approximate exponential distributions with fixed mean
µ = 0.2 illustrated by the third and the fourth histogram in the second row
of Fig. 3 - the network performs well. The shaping of the output distribution
clearly improves the generalization ability of the network.
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Figure 5: Performance of RELMs on the test set measured as RMSE for different input matrix
and bias scalings.

Fig. 4 shows the same as Fig. 3 for the robotics extrapolation task. The
generalization ability in the case where saturated hidden layer neurons are pro-
vided in the hidden layer is even worse than in the robotics interpolation task.
In this task, BIP optimizes the encoding of the neurons such that the mapping
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is approximated very well. Note, that the desired distribution is not always pro-
duced with high accuracy (see third plot in the second row of Fig. 4). However,
mean and standard deviation are approximated very well.

These examples demonstrate that the shaping of the output distributions for
the hidden layer neurons separates into two effects: weights which are too large
or too small for the given task are scaled and the encoding in the hidden layer
is sparsified. The combination of these effects leads to a good generalization
ability.

Fig. 5 shows how the test error (RMSE) changes when the input matrix W in

and the biases b are scaled with a factor. After scaling the input matrix and
the biases, BIP-training is applied. Fig. 5 (left) illustrates the results for the
robotics interpolation and Fig. 5 (right) for the robotics extrapolation task. The
test error for the randomly initialized ELM highly depends on the initialization
while the networks trained with BIP perform very well independently of the
initialization. BIP compensates the scaling of the incoming stimuli such that a
good generalization capability occurs indicated by a flat error surface below the
one for the randomly initialized ELMs.

4. Batch Intrinsic Plasticity for Benchmark Tasks

The following section describes experiments focusing on the impact of BIP
and RR on the task performance of different real world tasks. The input matrix
components W in

ij , the biases bi for a respective ELM are drawn from the uniform

distribution in [−1, 1]. The Fermi-function f(x) = 1/(1 + e−aix−bi) is again
used as activation function for the networks. The desired output producing the
targets for the BIP learning is the exponential distribution fdes = fexp with
a fixed mean µ separately drawn for each neuron from µ ∈ [0.05, 1]. BIP is
applied after the random initialization of the networks as pretraining method.
The results are averaged over 20 different network initializations for each data
set. The statistics over the networks is contained in the following tables. The
optimal RR parameter and network size is determined by a line search. All
experiments have been applied on a x86 64 linux machine with at least 4 GB of
memory and a 2+ GHz intel processor in matlab R2010a.

All data sets are regression tasks from the UCI machine learning repository
- detailed information can be found in [24]. The separation of the data sets
into training and test data is done as specified in the UCI repository for the
respective tasks (see Table 2). The input data has been normalized to [−1, 1],
while the output data was normalized into the range [0, 1].

The results of the learning for three of the tasks are illustrated in Fig. 6. The
first row shows the development of the test error for growing hidden layer size
when trained with linear regression. The randomly initialized ELMs strongly
overfit the training data when the network becomes large. This effect is signifi-
cantly reduced when pretrained with BIP. Whereas the effect is present for all
data sets, we show only three for illustration in Fig. 6.

The second row in Fig. 6 displays the development of the test error when
changing the ridge regression parameter for networks with R = 500 hidden
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Task Abbreviation Attributes # Training # Test

Abalone Ab 8 2000 2177
CaliforniaHousing Ca 8 8000 12640
CensusHouse8L Ce 8 10000 12784
DeltaElevators De 6 4000 5517

ComputerActivity Co 12 4000 4192
Elevators El 18 8725 7847

Table 2: Specification of the 6 used regression data sets from the UCI machine learning
repository [24].
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Figure 6: RMSE development on the test set for growing hidden layer size and different ridge
regression parameters.

neurons. The networks’ show a typical generalization behavior where the models
first overfit the data, reach an optimal value and then degenerate for too strong
regularization. The BIP-pretrained ELMs perform better than the randomly
initialized networks in a large range of output regularization parameters and
are by far less sensitive to its choice.

The results for the best performing ELMs are summarized in Tab. 3 and
Tab. 4. Tab. 3 contains the performance results on the test sets for ran-
domly initialized ELMs and BIP-trained ELMs with linear regression. The
results are given for the best obtained hidden layer size which was varied in
R ∈ [5, 10, . . . , 500, 1000]. The BIP-pretrained ELMs perform better than the
purely random initialized networks for the majority of the tested regression
tasks and lead to stable results with low variance. The results also show that
the BIP-pretrained networks can handle larger networks without overfitting the
data. The change in the hidden layer encoding shows a significant impact on
the networks’ performance.

Since large networks have a good generalization ability after training with
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Task BIP R RND R

Ab 0.0753± 0.0012 35 0.0750± 0.0009 35
Ca 0.1577± 0.0051 90 0.1587± 0.0034 25
Ce 0.0657± 0.0009 210 0.0675± 0.0019 110
De 0.0539± 0.0003 130 0.0529± 0.0002 70
Co 0.0390± 0.0022 170 0.0477± 0.0094 90
El 0.0371± 0.0020 500 0.0397± 0.0035 90

Table 3: The results (RMSE) of ELMs pretrained with BIP for real world regression tasks in
comparison to randomly initialized ELMs. The networks are stated with the optimal hidden
layer size.

BIP, ELMs with a R = 500 neuron hidden layer are used for further experi-
ments. We expect the BIP networks in this case to perform better than the
random networks after supervised readout training with RR, since the previous
experiments show that BIP improves the generalization ability significantly for
large networks. We state the test error results for the best performing networks
with the corresponding output regularization strength ε which was found in
ε ∈ [10−9, 10−8, . . . , 103] in Tab. 4.

Task BIP log ε RND log ε

Ab 0.0734± 0.0002 1 0.0739± 0.0001 −1
Ca 0.1492± 0.0013 2 0.1525± 0.0006 0
Ce 0.0628± 0.0002 0 0.0640± 0.0006 −3
De 0.0526± 0.0001 1 0.0527± 0.0002 −2
Co 0.0342± 0.0010 0 0.0350± 0.0017 −2
El 0.0357± 0.0003 0 0.0357± 0.0010 −1

Table 4: BIP-pretrained and randomly initialized ELMs trained with RR. The networks are
stated with the optimal RR parameter.

In order to compare the results obtained for the BIP-pretrained ELMs with
state of the art optimization techniques for ELMs, we summarize the perfor-
mance results from other methods in Table 5. The performance results for the
RELM, EI-ELM, I-ELM and CI-ELM where taken from [14, 7, 11, 25] respec-
tively.

It is shown that the BIP-pretrained ELMs additionally trained with RR can
perform better than other state of the art models. However, the optimization is
done in a complementary way, which is important to note. In such a case, it is
possible to combine those methods with BIP. Interestingly, the RELM performs
best on almost all of the tasks, which is not fully consistent with the results
obtained in this paper.

Table 6 shows the computational speed of the learning for one network.
BIP takes only a third of the computational time, while the read-out learning
is computationally more costly. The BIP algorithm only needs to be performed
only once for each network and data set, while the read-out learning needs to
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Task RELM EI-ELM I-ELM CI-ELM

Ab 0.076± 0.006 0.082± 0.002 0.092± 0.005 0.083± 0.003
Ca 0.117± 0.003 0.149± 0.002 0.168± 0.005 0.155± 0.005
Ce 0.036± 0.002 0.083± 0.001 0.092± 0.867 0.087± 0.002
De 0.018± 0.003 0.058± 0.003 0.074± 0.013 0.060± 0.007
Co 0.019± 0.003 0.094± 0.003 0.120± 0.013 -

Table 5: Mean performance and standard deviation of other state of the art methods on the
respective regression tasks used to benchmark BIP pretrained ELM with RR.

be recomputed when a different regularization parameter is used. BIP in its
present form is computationally efficient and does not slow down the learning
significantly when compared to the improvement of performance.

Task BIP RR sum (s)

Ab 3.0222 (27%) 8.2164 (73%) 11.2386
Ca 7.7488 (29%) 19.264 (71%) 27.0128
Ce 9.4519 (32%) 19.909 (68%) 29.3609
De 4.7233 (30%) 10.903 (70%) 15.6263
Co 4.5979 (26%) 12.907 (74%) 17.5049
El 2.1856 (17%) 10.454 (83%) 12.6396

Table 6: Computational time consumption for the BIP-pretraining (second column), the read-
out learning via RR (third column), and the sum of both. The values are given in seconds.
The percentage indicates how the computational time is divided by the learning methods.

The results demonstrate that the best performance of the BIP networks ad-
ditionally trained with RR in comparison to the randomly initialized networks
is not only due to RR or BIP. The combination of RR and BIP leads to sig-
nificantly better performing networks with a low variance in the test error for
all tasks used in the experiments. In addition, the BIP trained networks have
higher optimal RR parameters. This is due to the fact that the features pro-
vided by the hidden layer are more task suited. Less large output weights are
needed to produce a good mapping. This is desired cause it makes the networks
robust against noise in the hidden layer state.

5. Conclusion

This contribution proposes to use BIP as optimization method for ELMs
with a fixed hidden layer size and especially motivates the use of shaping output
distributions for hidden layer neurons in an ELM. It is further shown that the
additional use of output regularization can lead to good and stable performance
over different network initializations. The method is compared to other ELM
techniques and the timing of the algorithm is analyzed for real world regression
tasks.
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BIP is a recently developed and unsupervised scheme to pretrain ELMs. The
method is efficient and can therefore be used to initialize the networks input
weights and biases without detailed knowledge about the task. It was already
shown that the production of sparse codes in the hidden layer of a neural net-
work by producing exponential distributions with low fixed mean can lead to
good generalization results [20]. This was done for recurrent neural networks
by IP which was introduced by Triesch in [26]. IP is based on computationally
expensive gradient descent and therefore unsuited for ELMs. BIP overcomes
the problem of slow learning dynamics by formulating a regression problem.
The experiments show that the new learning method produces the desired out-
put distributions to some extend and leads to an improvement of the learning
for ELMs which are additionally regularized by ridge regression. Especially
networks with a large hidden layer have a better generalization ability when
pretrained with BIP.

Since every hidden layer neuron is updated separately, BIP is well suited
for methods optimizing ELMs by incrementally growing the network without
recomputation of the already obtained biases and slopes. BIP complements
those methods and could - combined with other optimization methods - lead to
even better learning results for ELMs. In addition, every neuron can be trained
by a different desired output distribution in order to produce a more diverse
encoding in the hidden layer.

Only the desired distribution fdes and the inverse of the activation f−1 is
needed for the method, which points out the high flexibility of the method. The
generic formulation might be used to analyze the performance of the method
with respect to other desired output distributions and activation functions. This
will lead to different codes in the hidden layer and has a huge impact on the
network’s performance.
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