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Abstract. This paper introduces the natural gradient for intrinsic plas-
ticity, which tunes a neuron’s activation function such that its output dis-
tribution becomes exponentially distributed. The information-geometric
properties of the intrinsic plasticity potential are analyzed and the im-
proved learning dynamics when using the natural gradient are evaluated
for a variety of input distributions. The applied measure for evaluation is
the relative geodesic length of the respective path in parameter space.

1 Introduction

Stochastic gradient descent methods are commonly used learning techniques to
minimize cost functions for non-linear optimization [1]. However, the parameter
estimates can lead to small gradient norms in some regions of the parameter
space, so called plateaus, where convergence can be slow.

One reason for this is that the parameterization and the corresponding out-
put of a model are defined in different metrical spaces. Most gradients defined
on an error measure only utilize Euclidean metrics in parameter space. But,
generally, there is no reason to assume that Euclidean metrics is the preferential
distance measure between solutions. It is well known that the parameter space
has a Riemannian metric structure in many cases that is analyzed by means of
information geometry [2] - a theory which employs differential-geometric meth-
ods in statistics.

This theory can be used to define a canonical distance measure in the output
space. It employs a non-trivial and often only locally defined metric tensor well-
suited to the Riemannian metric structure of the parameter space (see Fig. 2).
While the steepest direction in a parameter space with an Euclidean metric
structure is given by the conventional gradient, the steepest direction in a pa-
rameter space with Riemannian metric structure is given by the so-called natural
gradient. It was already shown in [3, 4, 5] that the use of the natural gradient
can be advantageous for neural network learning.

In 2004, Triesch introduced a model of intrinsic plasticity (IP) [6] for opti-
mization of the neuron’s activation function based on stochastic gradient descent.
The target of IP-learning is to approximate an exponential output distribution
with respect to a given input distribution. This maximizes the neuron’s infor-
mation transmission, caused by the high entropy of the target distribution. The
algorithm was also used to enhance the encoding in reservoir networks [7].

This paper introduces the Riemannian metric tensor for IP in parameter
space. The experiments reveal that it is more suited than an Euclidean metric
to describe distance relations between output distributions. This Tensor induces
the natural gradient and leads to a more general learning rule (NIP).



First, the Sects. 2 and 3 describe how the natural gradient is defined for
IP. Second, Sect. 4 contains experiments which complement the theory in the
paper by analyzing the differential-geometric properties of IP and show how the
learning dynamics change due to the use of the natural gradient. Finally, Sect. 5
concludes the paper.

2 Intrinsic Plasticity

Intrinsic Plasticity (IP) was developed by Triesch in 2004 [6] as a model for
homeostatic plasticity for analog neurons with parameterized Fermi-functions
y(x|θ) = (1 + e(−ax−b))−1 as activation with parameters θ = (a, b)T . The goal
is to optimize the information transmission of a single neuron strictly locally
by adaptation of slope a and bias b such that the neuron’s output y becomes
exponentially distributed with a fixed mean µ with respect to the input sample
distribution fx(x) where x is the synaptic sum arriving at the neuron.

IP-learning can be derived by minimizing the difference L(fy, fexp) = L(θ)
between the output fy and an exponential distribution fexp, quantized by the
Kullback-Leibler-divergence [9] (KLD):

L(θ) = Ex[l(y, θ)] =

∫
Ω

fy(y) log

(
fy(y)

fexp(y)

)
dy =

∫
Ω

− ln

(
ay(1− y)

e−
1
µy

)
︸ ︷︷ ︸

l(y,θ)

dy . (1)

Since IP was introduced as stochastic gradient decent, the online loss function is
identified as the integrand l(y, θ) (see Eq. (1)). Therefore the KLD is interpreted

Figure 1: Four different input distribu-
tions fx(x) (1. row) and the correspond-
ing learned exponential-like output dis-
tributions fy(y) for µ = 0.2 (2. row).

as expected loss Ex[l(y, θ)] for the in-
put samples x distributed by fx(x).
Interestingly, the original contribu-
tion [6] shows an additive separation
of Eq. (1) into the entropy Hx[y] and
the expectation value of the output
distribution Ex[y], which directly in-
fers that a minimization of L(θ) for
a fixed mean Ex[y] is equivalent to
entropy maximization of the output
distribution. The KLD and the dis-
tance to exponential distributions is
deeply analyzed in [10]. The typical
approach is to use the stochastic gradient of this potential in order to find a
minimum of the expected loss function. The following online update equations
for slope and bias - scaled by the step width ηIP - are obtained:
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Fig. 1 shows how four different input distributions (first row in the figure) are
transformed into exponential-like distributions (second row in the figure) after



training with IP. The figure clearly reveals that the best possible fit after IP
learning highly depends on the input distribution. This is due to the fact that
only two parameters in the Fermi-function are adapted.

3 Natural Gradient for Intrinsic Plasticity

Given an input distribution fx(x), an analog neuron, establishes a differen-
tiable function mapping between the parameter space Θ = R2 and the manifold
of possible output distributions Υ. The KLD comparing a given distribution
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Figure 2: Established differentiable re-
lation (Neuron) and metrics F and D
between parameter space Θ = R2 and
manifold of possible output distribu-
tions Υ.

to the exponential distribution with
fixed mean µ in Eq. (1) can be used to
derive a canonical distance measure on
the output distribution space resulting
in a non-Euclidean metric F on the pa-
rameter space Θ. The metric deter-
mining the distance between two out-
put distributions y1(x) = y(x, θ1) and
y2(x) = y(x, θ2) in Υ given by the pa-
rameter settings θ1 and θ2 = θ1 +dθ in
Θ for an infinitesimal change of param-
eters dθ is given by D (y1, y2). This
distance measure is transformed such that it induces the Riemannian metric
tensor F (θ) - a 2× 2 positive definite matrix given by the Fisher information [8]
- as a pull-back onto the parameter space:

D (y1, y2) = Ex[(l(y1, θ1)− l(y2, θ2))
2
] (3)

= Ex[
(
l(y1, θ1)− l(y1, θ1)−∇T l(y1, θ1)dθ

)2
] (4)

= Ex[
(
∇T l(y1, θ1)dθ

)2
] (5)

= dθ · Ex[∇l(y1, θ1) · ∇T l(y1, θ1)] · dθ = dθ · F (θ) · dθ (6)

This idea guarantees that the distance between two parameter vectors θ1 and
θ2 as measured by the length of the geodesic with respect to the metric tensor
F (θ) in Eq. (6) is equal to the previously defined distance measure D(y1, y2) in
Eq. (3) on the corresponding output distributions y1 and y2 in Υ.

It was already shown in [3] that parameter spaces spanned by neural networks
have a Riemannian character. In such spaces, the steepest descent direction of
a potential is given by the natural gradient defined by the metric tensor. The
following update equation is obtained when using the natural gradient for IP:

θt+1 = θt − η(F (θ) + εI)−1∇l(y, θ) = θt − η∇NIPl(y, θ) , (7)

where I is the 2 × 2 - identity matrix and ε ≥ 0 is a positive scalar. We
call ∇NIP := (F (θ) + εI)−1∇ the natural gradient operator for IP. Typically ε
can be set to zero to obtain a plain natural gradient formulation. But in the
more general definition Eq. (7), ε introduces a blending between conventional



and natural gradient. Note that this blending influences the step width of the
numerically applied gradient descent and stabilizes the inversion of the metric
tensor F .

There are several important issues to mention when dealing with the natural
gradient adaptation for IP: (i) Both gradient descents (conventional and natural)
have the same attractors [2]. (ii) It appeared in all experiments that the potential
L had always one attractor on each slope-half plane, see Fig. 3. (iii) The mapping
from parameter space to output distribution is not surjective with respect to a
fixed input distribution (no perfect approximation possible). (iv) In contrast
to Newton’s method, the natural gradient algorithm does not assume a locally
quadratic potential (F is always positive definite and convergence guaranteed).

However, in comparision to the conventional IP, the new algorithm is more
complex due to the calculation of the expectation value (see Eq. 6) and therefore
losses its online properties. This problem can be solved by an online estimation
of the metric tensor - done e.g. by proportional control laws.

4 Results

This section summarizes the experimental results of this contribution when using
Eq. (7) for a natural gradient version of IP. The experiments where performed
with different inputs: The first row in Fig. 1 shows the four different input
distributions that are used for investigation. A Gaussian (1-G), a bipartite (2-
G), a tripartite (3-G) Gaussian and a uniform (U) distribution. Ntr = 100
samples are used for training independently drawn from each distribution. A
step width of η = 10−3 and a numerical stabilization of ε = 10−1 is used.

4.1 Information Geometry

The following experiment visualizes how the geometry of the potential L changes
by use of the metric tensor at the attractor θ∗. The 1-G distribution is exemplary
used as input. Fig. 3 (center) shows the potential L(θ) with a clearly visible
plateau in b-direction (the x-axis corresponds to the slope a and the y-axis to
the bias b for Fig. 3). The change in the KLD is small in that direction. The
dashed line is the unit circle with a radius of η in the geometry defined by the
metric tensor F (θ∗), which is well suited to the potential: The unit circle is
stretched in b-direction. Fig. 3 (right) visualizes the distortion of the potential
after transformation with F (θ∗). The induced landscape becomes “Euclidean-
like” after transformation and losses the plateau - the potential develops isotropic
convergence properties.

4.2 Information Geodesy

The following experiments focus on a more global analysis of the natural gradient
descent. A gradient descent from a given starting point θ to the attractor θ∗ is
performed while the relative geodesic length of the path (RGL) is recorded. The
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Figure 3: Geodesics in the IP potential (left). The geometry change of the
attractor basin using the natural gradient (center and right). IP potential and
Fisher metric at the attractor (center). NIP potential and plain Euclidean metric
(right).

RGL gives the length of the geodesic γ from starting point θ to the attractor θ∗

with respect to the shortest way in the parameter space:

RGL(θ) =

∫
γ

ds / ‖θ − θ∗‖ , (8)

where ds =
√

da2 + db2 is the infinitesimal arc length in parameter space.
Fig. 3 (left) shows the potential field L(θ) of the 1-G input distribution.

It also shows four starting points θ1−4 for the learning. The solid lines show

Task E[RGL] (IP) E[RGL] (NIP)

1-G 1.3493 ± 0.5730 1.0748 ± 0.0526
2-G 1.0473 ± 0.0300 1.0234 ± 0.0342
3-G 1.1209 ± 0.0753 1.0505 ± 0.0506
U 1.0219 ± 0.0206 1.0056 ± 0.0099

Table 1: Relative average length of the
geodesics E[RGL] and their standard deriva-
tion

√
E[(RGL− E[RGL])2] for IP and NIP

learning.

gradient descents performed by
IP, while the dashed lines are
the geodesics from the NIP
learning. Although, both ap-
proaches have the same fixed-
point, the geodesics of the NIP
learning are on a more direct
way to the attractor in parame-
ter space - the natural gradient
method “sees more from the at-
tractor” than the conventional
IP gradient. Tab. 1 displays
the results of an experiment where the RGL is measured for N = 100 differ-
ent starting points drawn from a Gaussian distribution centered around the
attractor with covariance matrix Σ = I. It contains the average RGL and its
standard deviation.

Since the best possible value for the RGL is one (which corresponds to a
straight line from the initial point to the attractor in parameter space), the
values for the RGL in Tab. 1 show that the geodesic lines are almost straight for
all tested input distributions (visualized in Fig. 3). In addition, the low standard
deviation demonstrates that the curvature of the geodesic is more independent
from the initial point in the potential.



5 Conclusion

This contribution has adapted the intrinsic plasticity learning to the natural
gradient technique. It was shown that the new metric in parameter space is more
suited to the problem of tuning output distributions of non-linear neurons. The
geometry of the IP potential and the geodesy of the different gradient descents
were analyzed and revealed favorable properties when using the natural instead
of the conventional gradient.

Such an algorithm can be used on a network level. Further research should
investigate whether recurrent networks profit from the unsupervised adaptation
with natural gradient IP.
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