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Building Neural Representations for
Flexible Tool-Use

Klaus Neumann and Jochen J. Steil

Research Institute for Cognition and Robotics (CoR-Lab)
Bielefeld University - Germany

Abstract. We introduce a novel approach to model tool-use for hu-
manoid robots such as iCub. The learning represents the highly redun-
dant coupling of the inverse kinematics and the motions imposed by the
tool in a flexible way. It is shown that the manipulation kinematics can be
learned from few ground-truth examples using an efficient extreme learning
machine framework. The experiments reveal that this approach exhibits
human-like behavior (motor hysteresis effect) without learning from hu-
man data.

Keywords. Neural network, learning, extreme learning machine, inverse
kinematics, robotics, redundancy, tools, dynamic system.

1 Introduction

The ability to use tools is one of the cornerstones of behavioral intelligence
and fundamental to human life: tools are used to extend the reach, to amplify
the physical strength, and to overcome many limitations induced by the hu-
man anatomy. With the advent of autonomous and highly redundant humanoid
robots such as iCub [1], machines begin to display an unprecedented dexterity
and start to feature very flexible motor capabilities with a high precision. Be-
cause of their humanoid anatomy such robots are expected to handle tools in a
way similar to humans in a large variety of tasks. A predefined parametrization
or hard-coding of arbitrary constraints introduced by a tool is not feasible in
this scenario. Learning of the skill will be more efficient than a situation de-
pendent reprogramming. But can humanoid robots exhibit human-like behavior
when dealing with tools? And if so, how can this emergence help to understand
human behavior?

The implementation of control strategies for robots via computational models
acting in flexible environments has developed an outstanding history in recent
years. Several machine learning techniques have been applied very successfully
to specific inverse kinematics problems [2]. Under the notion of expendable
or adaptive body schemata, several studies investigate how motor and control
knowledge can be relearned for the case of tool-use [3, 4, 5]. Bi-manual pose-
constraint movements for tool-use were main subject in [6], but without a focus
on the multiplicity of different solutions. The integration of arbitrary constraints
has been analyzed for controlling specific actions, e.g. by Howard et al. [7]. How-
ever, learning the incorporation of arbitrary constraints and resolving problems
which high redundancy into voluntary control is not well investigated.



One of the most promising candidates for computational motor control and
emergence of complex and human-like behavior is the dynamical systems ap-
proach. It emphasizes motor behavior as a process of self-organization between
the robot and its environment. Besides their undoubted modeling power, finding
appropriate dynamical systems for a given complex behavioral phenomenon is
difficult due to their inherent unpredictability. Thus, modeling is either left to
the intuition of the expert or reduced to the baseline behaviors in order to solve
the problem with focus on practicability. This course of action almost eliminates
all unexpected emergent behavior which is of great interest in sciences building
models for cognition and therefore undesirable. In many cases, cognitive effects
are explicitly integrated with the use of human data in the learning process or
manual tuning of the model which prevents a deeper understanding of the emer-
gence of intelligent behavior. Programming by demonstration is such a technique
to bootstrap learning for robots with the help of a human demonstrator [8, 9].
Despite the impressive success of programming by demonstration in many ap-
plications like robotics [10, 11], it is not surprising that systems trained in this
manner show human-like behavior. But is it also possible for a computational
framework to emerge human-like behavior when learning from robot data which
was produced by a robot inspired by human-beings? And if so, what kind of be-
havior is expected to emerge when robots learn to handle tools in a way similar
to humans?

It is well known that reaching movements towards tools require a series of
complex transformations between sensory and motor coordinate systems. De-
spite the possibly infinite number of movements, only those with a high degree
of structure and invariance in the kinematical parameters remain as candidates
for movement selection. Accumulated experimental evidence suggests the motor
hysteresis effect (MHE) [12]. This effect was first shown by Rosenbaum in the
early nineties [13, 14] in experimental setups concerning motor control strategies
where the participants were supposed to perform grasp and manipulation tasks.
Such tasks are carried out in the context of ongoing sequences of behavior: on-
going grasp selection was highly influenced by grasps used in the previous trial.
Besides many plausible explanations Rosenbaum argued that movement genera-
tion causes less cognitive load when generated by small variations to the previous
plan than the creation from scratch [15] causing better energy efficiency. This
effect has been reproduced in a number of experiments on humans [16, 14, 17].

In this paper, we propose a flexible tool-use framework for the humanoid
robot iCub to perform reaching movements and will focus on complex emergent
behavior induced by learning. Many practical manipulation tasks can be treated
as imposing a certain constraint on the motion of the robot’s hands. Examples
are use of a stick or a steering wheel, where the hands become coupled with re-
spect to both orientation and position. Inherent in the use of tools by humanoids
is the high redundancy of the manipulation scenario. There are several different
ways to handle a tool, either caused by its construction or the humanoid robot,
that need to be taken into account. We employ a framework consisting of two
coupled extreme learning machines (ELM) [18] for learning which structurally



separates the tool from the kinematics of the robot. This model will be used to
induce dynamical systems programmed by a scheme called state prediction (SP)
introduced in particular for recurrent neural networks in [19]. The geometry
of the given tool and the kinematical structure of the robot are only implic-
itly available through training examples which can be obtained by kinesthetic
teaching or through motor babbling.

The experiments will reveal that the proposed dynamical system approach
is sufficient to encode the infinite number of grasping solutions and that a re-
production of the constraint is achieved when generalizing to unseen targets.
We additionally show that motor hysteresis emerges as control strategy in the
proposed framework without explicit incorporation when using the iCub data.

2 Neural Learning Approach: Extreme Learning Machine
and State Prediction

We first introduce the neural model implementing the dynamical system. Then,
programming of multi-stable dynamics into the neural model is presented.

2.1 Network Architecture: Extreme Learning Machine

We consider the network architecture depicted in Fig. 1 called extreme learning
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Figure 1: ELM with integration loop.

machine (ELM) [18]. The network com-
prises three different layers: u ∈ RI col-
lects the input, h ∈ RR the hidden, and
y ∈ RO the output neurons. The in-
put is connected to the hidden layer
through the input matrix W in ∈ RR×I
which remains fixed after random ini-
tialization and semantically separates
the input uk = (p,xk)T into parame-
ters p ∈ RP and network state xk ∈ RX
at time step k, where the input is satis-
fying P + X = I. The read-out is lin-
ear in the parameters given by the matrix W out ∈ RO×R subject to supervised
learning. The calculation for the ith output neuron for input uk is thus given
by:

yi(u
k) =

∑
j

W out
ij f(aj

∑
n

W in
jnu

k
n + bj) (1)

where aj , bj are slope and bias parameterizing the component-wise applied Fermi
function f(x) = 1

1+e−x , and j = 1 . . . R is the index of the hidden layer neuron.
The output of the ELM is then used to compute the next state of the network:

xk+1 = xk + ∆t · y(uk) , (2)

where ∆t is a time constant for discretization of the continuous dynamics, k is
the current time step of the iteration, and y(uk) is the output of the ELM with



input uk. The initial state of the network is denoted by x0.

2.2 Programming Dynamics: State Prediction

In order to imprint suitable dynamics into the ELM, the programming dynamics
approach recently introduced in [19] called state prediction (SP) is used and
adapted for the model shown in Fig. 1. This approach extends the training
data with synthesized sequences to facilitate attraction to the data samples.
Sequences x̂sn(k) = xn + (1 − k

K )2νs are generated for each input sample pair
pn and xn in the data set; s denotes the index of the S sequences, νs is a small
perturbation, k = 1, . . . ,K are the time steps, and n = 1, . . . , N is the index
of the training samples. This imprints xn as a valid attractor of the dynamical
system.

The corresponding hidden network states h(pn, x̂
s
n(k)) for each sequence

are collected. Attraction to the desired outputs is enforced by mapping states
h(pn, x̂

s
n(k)) to outputs x̂sn(k+ 1)− x̂sn(k). This can be accomplished efficiently

by applying ridge regression:

W out = (HTH + αI)−1HT Q̂ , (3)

where

H =



h(p1, x̂
1
1(1))T

...
h(pn, x̂

s
n(k))T

...
h(pn, x̂

S
N (K − 1))T

 and Q̂ =



x̂1
1(2)T − x̂1

1(1)T

...
x̂sn(k + 1)T − x̂sn(k)T

...
x̂SN (K)T − x̂SN (K − 1)T

 (4)

collects the hidden states and the desired outputs in the respective matrices
and α modulates the trade-off between weight decay and training error. The
latter is added for the sake of a better generalization [20, 21] - a well established
procedure in neural networks learning (see, e.g. [22]). The perturbations are
chosen randomly by a multivariate Gaussian distribution with Σ = 0.001 · I
centered around the desired point of attraction xn.

The presented approach differs from the original work in [19] by using a
relative encoding of the output. The network therefore induces continuous dy-
namics whose discretization is explicitly controlled through ∆t. We yield S = 7
sequences with K = 5 time steps for training in the experiments, which enlarges
the training set by a factor of S · (K − 1). However, learning is still feasible due
to the efficient learning scheme of the ELM approach.

3 Dynamical Tool-Use for iCub

Given a robot, the forward kinematics function F : Rm → Rn is uniquely defined.
It converts a set of joint angles q ∈ Rm into the corresponding end effector
configuration e ∈ Rn. An inverse kinematics function F−1 of a robot is defined



by the forward kinematics in the following equation: F (F−1(e)) = e . It maps
a configuration of the end effector to the corresponding joint angels of the robot.
Note that there is no unique inverse kinematics function in the case of iCub
because of the redundancy. A tool is interpreted as a function C : Rp → Rn
which maps the actual tool configuration p ∈ Rp to an end effector configuration
e such that valid grasps q are selected.

3.1 Tools as Kinematic Constraints for iCub

The end effector configuration of the humanoid robot iCub contains two subsets:
the left and the right hand. The hand center points pL,R are described in
Cartesian coordinates x, y and z with respect to the world coordinate system.
The orientations of the hands are expressed as spatial orientations of the grasp
axis dL,R with a normalization ‖dL,R‖ = 1, see Figure 2 (right). Thus the end
effector configuration is a n-dimensional (n = 12) input variable

e = (eL, eR)T = (pL,dL,pR,dR)T ∈ Rn , (5)

where L stands for left and R for right. The iCub cartesian solver, which will be
used to generate the ground truth examples, operates on two times seven degrees

Graspaxis

Pointaxis

Figure 2: iCub’s right hand.

of freedom (m = 14). Each arm is moved
separately by controlling two rotational de-
grees of freedom in the shoulder, two in the
elbow and three in the wrist. However, the
arms are coupled through the hip and whole
body motion but without consideration in
this paper.

A tool is defined by a constraint function
C : Rp → Rn, which restricts the hand con-
figurations to a subset of the reachable task
space. The constraint is parameterized by the tool’s position and tool’s orienta-
tion in Euler angles: p = (s1, s2, s3, θ1, θ2, θ3) ∈ Rp . Given this p-dimensional
(p = 6) input vector p the set of suitable bi-manual end effector configurations
C(p) = Ep ⊂ Rn is uniquely defined through the variety of possible grasps.
Such a set is transformed by the inverse kinematics to a set of corresponding
joints Qp ⊂ Rm such that F (Qp) = Ep. For the control of the robot, a mapping
T : Rp → Rm, choosing a robot’s joint configuration T (p) = q ∈ Qp by coupling
the tool C and the inverse kinematics F−1 : Rn → Rm is needed:

T (p) = F−1(C(p)) = F−1(e) = q ∈ Qp . (6)

Fig. 3 shows some examples of iCub grasping a one meter long stick bi-
manually controlled by the introduced dynamical system. Given the position
and orientation of the tool as input variable p, the introduced neural network
architecture (after learning as described below) computes joint angles q to grasp
the stick appropriately. In Fig. 3 (left) iCub performs a bi-manual grasp with
the same end effector configuration e ∈ Ep for p = (0, . . . , 0)T but with different



joint solutions. In Fig. 3 (right) iCub produces two grasps with both different

hand center points and grasp axes: pL,R
1 6= pL,R

2 and dL,R
1 6= dL,R

2 .

Figure 3: iCub grasping a stick bi-manually in four different ways. Different
solutions through the redundancy of iCub (left). Different solutions through the
redundancy of the stick manipulation scenario (right).

3.2 Tool-Use: Building Neural Representations

At first, the neural representation of the tool is constructed by the ELM model
described in Sect. 2. Only the left hand is modeled for simplicity. This reduces
the forward kinematics to the forward function of the left arm: FL(qL) = eL.

The parametrization p = (s1, s2, s3, θ1, θ2, θ3) ∈ R6 for the tool ELM rep-
resents the tool configuration, which consists of the three-dimensional posi-
tion s = (s1, s2, s3) ∈ R3 in Cartesian coordinates and the orientation θ =
(θ1, θ2, θ3) ∈ R3 in roll-pitch-yaw angles. The state x = eL = (pL,dL) ∈ R6

of this ELM is consisting of the end effector position pL and the coordinates of
the grasp axis dL. The network is used to produce valid grasps of the tool with
respect to the tool’s configuration. While the dynamics of the ELM are iterated,
a trajectory x0 → · · · → xk → · · · → x∞ towards a proper grasp is generated
while convergence of the network to a fixpoint attractor state.

The goal is to use such states as targets for an arbitrary inverse kinematics
solver in order to maintain the joint angles for the robot used in the tool manip-
ulation scenario. This solver could be a simple non-dynamic function as in [6] or
a model suited to represent the high redundancy involved in humanoid robotics;
such as in [19]. One advantage of this modularly approach is that the modules
for tool or robot kinematics are easily exchangeable and the dynamics become
interpretable in comparison to a direct encoding from tool configuration to joint
angle trajectories.

However, we also use the ELM model to represent the inverse kinematics de-
scribed in Sect. 2. This ELM gets the state of the first ELM eL as parametriza-
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Figure 4: Two ELMs to implement the tool kinematics and the robot’s inverse
kinematics separately.

tion. The state of this ELM is collection of joints qL, which is supposed to
converge to a solution of the inverse kinematics. The modular architecture for
neurally representing tool-use is depicted in Fig. 4. The following update equa-
tions are obtained for a time dependent tool configuration pk:

eL,k+1 = eL,k + ∆t · v̂1(pk, eL,k) (7)

qL,k+1 = qL,k + ∆t · v̂2(eL,k,qL,k) , (8)

where v̂1,2 are the output of the first and the second ELM. In addition, the
vector of the direction is normalized: ‖dL,k‖ = 1 : ∀k.

In order to train the models, a data set doublet D = (D1, D2) is needed.
D1 = (pi, e

L
i )i=1,...,Ntool

contains a set of tool configurations pi and a set of
corresponding end effector configurations eLi when grasping the tool. D2 =
(eLi ,q

L
i )i=1,...,Nrobot

comprises end effector configurations eLi and the respective
joint angles qL

i . Supervised learning is efficiently done by separating the learning
for the modules and using the state prediction approach. The following sections
will suggest methods to implement the dynamics of an one meter long stick.

4 iCub Handling a Tool: The Stick Example

This section describes the training for the dynamical systems driving iCubs
kinematics towards tool-use. A stick is used as an example in the scenario. We
additionally show that also the inverse kinematics of iCub can be learned in the
same framework.

4.1 Learning the Tool Kinematics of a Stick

In order to learn the tool kinematics of a stick, data is generated by uni-
formly sampling the space of possible tool configurations in the range s1...3 ∈
[−0.1m, 0.1m] and θ1...3 ∈ [−30◦, 30◦] with Ntool = 1000 samples. For each tool
configuration, one valid grasp is randomly placed on the one meter long stick
given by the end effector position pL, the grasp axis orientation dL, and the
corresponding joint angles qL.



We additionally enforce a morphology of the tool which forces iCub at the
left end of the stick (−0.5m to −0.25m) to point with its thumb towards the
right end and at the right end of the stick (0.25m to 0.5m) to point with its
thumb towards the left end (e.g. by an ergonomic handle). This is done by
representing only the respective solution for the grasp axis at the ends of the
stick. In between is a range of indifference (−0.25m to 0.25m) where both grasp
axes were presented during learning.

The data for training are obtained through the iCub simulation, but it is also
possible to obtain the data by kinesthetic teaching.
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Figure 5: Position and directions of stick grasps obtained by the neural repre-
sentation.

The left part of Fig. 5 shows the implemented continuous attractor with
finite length representing the tool for configuration s = θ = (0, 0, 0)T . It is
demonstrated that various initial end effector configurations converge to tool
grasp positions on an almost straight trajectory. The figure demonstrates that
the network connects the attractors to a continuous manifold, although only
fixpoint attractors are implemented by SP. Fig. 5 (right) shows the two possible
grasp axis orientations - either iCub’s thump points towards the left or the right
end of the stick. Note, that the grasp axis trajectories are in the space of the
unit sphere due to the restriction ‖dL‖ = 1.

Fig. 6 illustrates trajectories for the tool ELM for different parameter set-
tings projected onto the x-z-plane. A finite-length continuous attractor is build
(red stroke in the figure) which can be moved and rotated by changing the pa-
rameterization in the input vector. Parameters are s = (−0.05, 0, 0)T and roll
angle = 20◦ (left) and s = (0.1, 0, 0.15)T and roll angle = −25◦ (right).

Tab. 7 shows the average error and its standard deviation for 100 grasp trials.
For each trial, a tool configuration in the range of the training data and a starting
points uniformly initialized in [−1, 1]3 is given. After 1000 convergence steps,
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Figure 6: Dynamic flow fields of the tool ELM
projected to the x-z-plane.

Left Solution
Pos. [cm] 0.47 ± 0.18
Ori. [·◦] 0.45 ± 0.17

Right Solution
Pos. [cm] 0.46 ± 0.19
Ori. [·◦] 0.45 ± 0.18

Figure 7: Mean and stan-
dard deviation of the posi-
tion and orientation error on
test data.

the distance from the end effector position to the stick and the distance between
grasp axis and stick axis are calculated and recorded. The errors are separated
into left and right solution which means that the thumb is pointing towards the
respective side. The table demonstrates that the errors are small enough for a
grasping since the average error is significantly lower than a typical diameter for
a stick used for iCub.

4.2 Learning the Inverse Kinematics of iCub

The inverse kinematics mapping will also be implemented by a dynamically
applied ELM as described in Sect. 2. The respective parameterization is given
by the state of the ELM representing the tool dynamics, which is the target of
the end effector: eL = (pL,dL). The state of this ELM is programmed such that
it converges to a solution of the inverse kinematics: qL : F (qL) = eL.
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Figure 8: Data set used for the learning of iCub’s inverse kinematics mapping
(left). iCub performing the same grasp with two different solutions (right).



The used network approach is sufficient to prevent averaging of ambiguous
data samples. Therefore, coping with the high redundancy of the inverse kine-
matics mapping of iCub. The data set used for learning iCub’s inverse kinematics
mapping was produced by the simulation and contains Nrobot = 1000 samples.
The data set contains two different solutions for this mapping, achieved by set-
ting the point axis to an angle of either π

4 or −π4 with respect to the y-axis.
The solutions are called upper solution for π

4 and lower solution for −π4 . Fig. 8
(left) shows the samples of the data set, demonstrating that the upper solution is
mainly present in the upper part of iCub’s working space and the lower solution
in the lower part. The right side of Fig. 8 shows iCub performing the same grasp
with the two different solutions.

In order to verify the generalization ability of the presented approach, 300

Pos. [cm] Upper Sol. Lower Sol.
Train 0.11 ± 0.13 0.67 ± 1.18
Test 0.23 ± 0.27 0.83 ± 1.34

Ori. [·◦] Upper Sol. Lower Sol.
Train 0.27 ± 0.37 1.63 ± 3.01
Test 0.45 ± 0.67 2.01 ± 3.23

Table 1: Mean and standard variation of the posi-
tion and orientation error on training and test data.

additional training sam-
ples are produced in the
same way. Tab. 1 com-
prises the errors for an
ELM averaging over this
300 data samples. The ac-
curacy of the different so-
lutions are assigned sepa-
rately. Furthermore, the
table also contains the
training errors which are
slightly lower than the test errors. Besides the fact, that the upper solution is
approximated more precisely than the lower solution, both errors stay below 1
cm in average. The introduced model is therefore sufficient to cope with the
inverse kinematics mapping of the humanoid robot iCub.

5 Emergence of Motor Hysteresis from Robot Data

As already mentioned, Rosenbaum [13, 14] performed a remarkable experiment
dealing with terminal postures in grasping and object manipulation, where the
end-state comfort effect and the motor hysteresis effect (MHE) were revealed.
Participants were supposed to grasp a rod that was horizontally supported by a
cradle. The goal was to place its right or left end against one of 14 targets, while
the targets were arranged vertically on the shelves of a bookcase and had to be
contacted in either ascending or descending order. High targets corresponded
to low numbers and low targets were denoted by high numbers. Satisfying the
end-state comfort effect, about 80 percent of the subjects used the overhand grip
when the goal was to bring the right end of the bar to the high targets, and 90
percent used the underhand grip when the goal was to bring the right end to the
low targets. Besides this, the end-state was significantly affected by the history
of previously performed grasps; which is of main interest in this section.



5.1 Motor Hysteresis

It was shown that the MHE observed in human movement studies is subject to
the fact that such tasks are carried out in the context of ongoing sequences of
behavior and can be observed in experimental setups concerning motor control
strategies. It was demonstrated that ongoing grasp selection was highly influ-
enced by grasps used in the previous trial: Participants persisted in using an
overhand grasp in the ascending target condition and an underhand grasp in the
descending target condition - named MHE by Kelso et al. [12]. The explanation
for the MHE given by Rosenbaum et al. [13] postulates a range of indifference,
where it is equally comfortable for the participants to use either an overhand or
an underhand grasp. Hence, a new movement plan can be generated by small
variations to the previous plan, causing less cognitive load than the creation
from scratch [15]. Rosenbaum formulated the MHE in the following words: “the
sequential effect can be summarized by saying that subjects persisted in using
the grip they used before” [13]. The MHE and the end-state comfort effect were
studied in further detail for continuous task spaces in [23].

5.2 Motor Hysteresis in the Computational Model

Interestingly, the neural approach introduced in this paper shows an effect in
the tool manipulation scenario which is similar to those for humans. The plots
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Figure 9: Position and directions of stick grasps obtained by the neural repre-
sentation.

in Fig. 9 summarizes two experiments with iCub.
In the first experiment, iCub is supposed to move its left hand from the left

side (indicated by −0.5m) of the stick towards the right side (indicated by 0.5m)
and back. This is done by changing eL1 linearly form −0.5m to 0.5m and back
while iterating the update Eqs. (7) and (8). We recorded dL1 in this iteration
phase and show the results in Fig. 9 (left). The morphology of the tool forces



iCub at the left end of the stick to point with its thumb towards the right end
and at the right end of the stick to point with its thumb towards the left end.
The plot shows that in the middle region both solutions are encoded in the
network and stable but selection is solely determined by the previous state. A
clear hysteresis effect shows up, which is similar to the motor hysteresis effect
triggered by the tool and following the psychophysical intuition that “a subject
persisted in using the grip it used before” ([13]).

The second plot (Fig. 9, right) shows an experiment where iCub is sup-
posed to move its left hand on a target trajectory. The trajectory started in
eL,0 = (−0.11;−0.2;−0.1)T , passes eL,50 = (−0.225;−0.2; 0.025)T and ends at
eL,100 = (−0.29;−0.2; 0.29)T . This points correspond to steps 0, 50, and 100,

respectively. The z-values of the hand orientations êL,k6 = FL
6 (qL,k) indicating

the selected inverse kinematics solution are recorded and visualized in Fig. 9
(right). When looking at the data in Fig. 8, lower solutions for the inverse kine-
matics occur with a higher probability than upper solutions in regions where
the z-value is high and vice versa. This is due to iCub morphology. Thus iCub
prefers upper solutions (1-25) in the upper part of the task space and lower
solutions (65-100) in the lower part. In the middle of the workspace (25-65),
both solutions are represented in the data and successfully imprinted into the
neural architecture such that iCub persists in using the already used solution
for the inverse kinematics. The selected solution depends mainly the history
of the previous performed grasps. Interestingly, this effects are not explicitly
implemented but arises naturally through the data production which is in turn
affected by the robots morphology.

6 Conclusion

We present a neural learning approach to cope with bi-manual tool-use for the
humanoid robot iCub. Despite the big data sets obtained by SP, learning stays
efficiently due the ELM scheme. The idea is to separate the representation of
the tool and the robot’s inverse kinematics in order to profit from the modular
architecture in terms of substitutability and interpretability. It is shown that a
tool and the inverse kinematics can be stored in the network to a high accuracy.
Also the high redundancy involved in the task is represented, which can be
resolved dynamically.

Interestingly, the introduced approach also shows motor hysteresis effects
typically observable in psychophysical experiments on human manipulation tasks.
It is demonstrated that this typical human-like behaviors arise in a natural way
without explicit integration into the learning.
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